Found 8 results
Filters: Author is Shprits, Yuri Y.  [Clear All Filters]
Authors: Shprits Yuri Y, Horne Richard B, Kellerman Adam C., and Drozdov Alexander Y.
Title: The dynamics of Van Allen belts revisited
Abstract: N/A
Date: 02/2019 Publisher: Nature Physics Pages: 102 - 103 DOI: 10.1038/nphys4350 Available at:
More Details
Authors: Zhu Hui, Chen Lunjin, Liu Xu, and Shprits Yuri Y
Title: Modulation of Locally Generated Equatorial Noise by ULF Wave
Abstract: In this paper we report a rare and fortunate event of fast magnetosonic (MS, also called equatorial noise) waves modulated by compressional ultralow frequency (ULF) waves measured by Van Allen Probes. The characteristics of MS waves, ULF waves, proton distribution, and their potential correlations are analyzed. The results show that ULF waves can modulate the energetic ring proton distribution and in turn modulate the MS generation. Furthermore, the variation of MS intensities is attributed to not only ULF wave activities but also the variation of background parameters, for example, number density. The results confirm the opinion that MS waves are generated by proton ring distribution and propose a new modulation phenomenon.
Date: 04/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026199 Available at:
More Details
Authors: Cao Xing, Ni Binbin, Summers Danny, Shprits Yuri Y, Gu Xudong, et al.
Title: Sensitivity of EMIC Wave-Driven Scattering Loss of Ring Current Protons to Wave Normal Angle Distribution
Abstract: Electromagnetic ion cyclotron waves have long been recognized to play a crucial role in the dynamic loss of ring current protons. While the field‐aligned propagation approximation of electromagnetic ion cyclotron waves was widely used to quantify the scattering loss of ring current protons, in this study, we find that the wave normal distribution strongly affects the pitch angle scattering efficiency of protons. Increase of peak normal angle or angular width can considerably reduce the scattering rates of ≤10 keV protons. For >10 keV protons, the field‐aligned propagation approximation results in a pronounced underestimate of the scattering of intermediate equatorial pitch angle protons and overestimates the scattering of high equatorial pitch angle protons by orders of magnitude. Ou. . .
Date: 01/2019 Publisher: Geophysical Research Letters Pages: 590 - 598 DOI: 10.1029/2018GL081550 Available at:
More Details
Authors: Zhu Hui, Shprits Yuri Y, Chen Lunjin, Liu Xu, and Kellerman Adam C.
Title: An event on simultaneous amplification of exohiss and chorus waves associated with electron density enhancements
Abstract: Whistler mode exohiss are the structureless hiss waves observed outside the plasmapause with featured equatorward Poynting flux. An event of the amplification of exohiss as well as chorus waves was recorded by Van Allen Probes during the recovery phase of a weak geomagnetic storm. Amplitudes of both types of the waves showed a significant increase at the regions of electron density enhancements. It is found that the electrons resonant with exohiss and chorus showed moderate pitch‐angle anisotropies. The ratio of the number of electrons resonating with exohiss to total electron number presented in‐phase correlation with density variations, which suggests that exohiss can be amplified due to electron density enhancement in terms of cyclotron instability. The calculation of linear growth . . .
Date: 10/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2017JA025023 Available at:
More Details
Authors: Zhelavskaya Irina S., Shprits Yuri Y, and ć Maria
Title: Empirical modeling of the plasmasphere dynamics using neural networks
Abstract: We propose a new empirical model for reconstructing the global dynamics of the cold plasma density distribution based only on solar wind data and geomagnetic indices. Utilizing the density database obtained using the NURD (Neural-network-based Upper hybrid Resonance Determination) algorithm for the period of October 1, 2012 - July 1, 2016, in conjunction with solar wind data and geomagnetic indices, we develop a neural network model that is capable of globally reconstructing the dynamics of the cold plasma density distribution for 2≤L≤6 and all local times. We validate and test the model by measuring its performance on independent datasets withheld from the training set and by comparing the model predicted global evolution with global images of He+ distribution in the Earth's plasmasph. . .
Date: 10/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024406 Available at:
More Details
Authors: Shprits Yuri Y, Kellerman Adam, Drozdov Alexander, Spense Harlan, Reeves Geoffrey, et al.
Title: Combined Convective and Diffusive Simulations: VERB-4D Comparison with March 17, 2013 Van Allen Probes Observations
Abstract: This study is focused on understanding the coupling between different electron populations in the inner magnetosphere and the various physical processes that determine evolution of electron fluxes at different energies. Observations during the March 17, 2013 storm and simulations with a newly developed Versatile Electron Radiation Belt-4D (VERB-4D) are presented. Analysis of the drift trajectories of the energetic and relativistic electrons shows that electron trajectories at transitional energies with a first invariant on the scale of ~100MeV/G may resemble ring current or relativistic electron trajectories depending on the level of geomagnetic activity. Simulations with the VERB-4D code including convection, radial diffusion, and energy diffusion are presented. Sensitivity simulations in. . .
Date: 09/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL065230 Available at:
More Details
Authors: Shprits Yuri Y, Subbotin Dmitriy, Drozdov Alexander, Usanova Maria E., Kellerman Adam, et al.
Title: Unusual stable trapping of the ultrarelativistic electrons in the Van Allen radiation belts
Abstract: Radiation in space was the first discovery of the space age. Earth’s radiation belts consist of energetic particles that are trapped by the geomagnetic field and encircle the planet1. The electron radiation belts usually form a two-zone structure with a stable inner zone and a highly variable outer zone, which forms and disappears owing to wave–particle interactions on the timescale of a day, and is strongly influenced by the very-low-frequency plasma waves. Recent observations revealed a third radiation zone at ultrarelativistic energies2, with the additional medium narrow belt (long-lived ring) persisting for approximately 4 weeks. This new ring resulted from a combination of electron losses to the interplanetary medium and scattering by electromagnetic ion cyclotron waves to the Ear. . .
Date: 11/2013 Publisher: Nature Physics Pages: 699 - 703 DOI: 10.1038/nphys2760 Available at:
More Details
Authors: Horne Richard B, Thorne Richard M, Shprits Yuri Y, Meredith Nigel P, Glauert Sarah A, et al.
Title: Wave acceleration of electrons in the Van Allen radiation belts
Abstract: The Van Allen radiation belts1 are two regions encircling the Earth in which energetic charged particles are trapped inside the Earth's magnetic field. Their properties vary according to solar activity2, 3 and they represent a hazard to satellites and humans in space4, 5. An important challenge has been to explain how the charged particles within these belts are accelerated to very high energies of several million electron volts. Here we show, on the basis of the analysis of a rare event where the outer radiation belt was depleted and then re-formed closer to the Earth6, that the long established theory of acceleration by radial diffusion is inadequate; the electrons are accelerated more effectively by electromagnetic waves at frequencies of a few kilohertz. Wave acceleration can increase . . .
Date: 09/2005 Publisher: Nature Pages: 227 - 230 DOI: 10.1038/nature03939 Available at:
More Details