Found 2 results
Filters: Author is de Soria-Santacruz Pich, Maria  [Clear All Filters]
Authors: Pich Maria de Soria-S, Jun Insoo, and Evans Robin
Title: Empirical radiation belt models: Comparison with in-situ data and implications for environment definition
Abstract: The empirical AP8/AE8 model has been the de-facto Earth's radiation belts engineering reference for decades. The need from the community for a better model incubated the development of AP9/AE9/SPM, which addresses several shortcomings of the old model. We provide additional validation of AP9/AE9 by comparing in-situ electron and proton data from Jason-2, POES, and the Van Allen Probes spacecraft with the 5th, 50th, and 95th percentiles from AE9/AP9 and with the model outputs from AE8/AP8. The relatively short duration of Van Allen Probes and Jason-2 missions means that their measurements are most certainly the result of specific climatological conditions. In LEO, the Jason-2 proton flux is better reproduced by AP8 compared to AP9, while the POES electron data are well enveloped by AE9 5th . . .
Date: 08/2017 Publisher: Space Weather DOI: 10.1002/2017SW001612 Available at:
More Details
Authors: Ni Binbin, Li Wen, Thorne Richard M, Bortnik Jacob, Green Janet C, et al.
Title: A novel technique to construct the global distribution of whistler mode chorus wave intensity using low-altitude POES electron data
Abstract: Although magnetospheric chorus plays a significant role in the acceleration and loss of radiation belt electrons, its global evolution during any specific time period cannot be directly obtained by spacecraft measurements. Using the low-altitude NOAA Polar-orbiting Operational Environmental Satellite (POES) electron data, we develop a novel physics-based methodology to infer the chorus wave intensity and construct its global distribution with a time resolution of less than an hour. We describe in detail how to apply the technique to satellite data by performing two representative analyses, i.e., (i) for one specific time point to visualize the estimation procedure and (ii) for a particular time period to validate the method and construct an illustrative global chorus wave model. We demonst. . .
Date: 07/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 5685 - 5699 DOI: 10.1002/jgra.v119.710.1002/2014JA019935 Available at:
More Details