Biblio

Found 7 results
Filters: Author is Engebretson, Mark J.  [Clear All Filters]
2019
Authors: Lessard Marc R., Paulson Kristoff, Spence Harlan E., Weaver Carol, Engebretson Mark J, et al.
Title: Generation of EMIC Waves and Effects on Particle Precipitation During a Solar Wind Pressure Intensification with B z >
Abstract: During geomagnetic storms, some fraction of the solar wind energy is coupled via reconnection at the dayside magnetopause, a process that requires a southward interplanetary magnetic field Bz. Through a complex sequence of events, some of this energy ultimately drives the generation of electromagnetic ion cyclotron (EMIC) waves, which can then scatter energetic electrons and ions from the radiation belts. In the event described in this paper, the interplanetary magnetic field remained northward throughout the event, a condition unfavorable for solar wind energy coupling through low‐latitude reconnection. While this resulted in SYM/H remaining positive throughout the event (so this may not be considered a storm, in spite of the very high solar wind densities), pressure fluctuations were d. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026477 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026477
More Details
2017
Authors: Summers Danny, Shi Run, Engebretson Mark J, Oksavik Kjellmar, Manweiler Jerry W., et al.
Title: Energetic proton spectra measured by the Van Allen Probes
Abstract: We test the hypothesis that pitch-angle scattering by electromagnetic ion cyclotron (EMIC) waves can limit ring current proton fluxes. For two chosen magnetic storms, during March 17-20, 2013 and March 17-20, 2015, we measure proton energy spectra in the region 3 ≤ L ≤ 6 using the RBSPICE B instrument on the Van Allen Probes. The most intense proton spectra are observed to occur during the recovery periods of the respective storms. Using proton precipitation data from the POES (NOAA and MetOp) spacecraft, we deduce that EMIC wave action was prevalent at the times and L-shell locations of the most intense proton spectra. We calculate limiting ring current proton energy spectra from recently developed theory. Comparisons between the observed proton energy spectra and the theoreti. . .
Date: 09/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024484 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024484/full
More Details
2015
Authors: Simms Laura E., Engebretson Mark J, Smith A. J., Clilverd Mark, Pilipenko Viacheslav, et al.
Title: Analysis of the effectiveness of ground-based VLF wave observations for predicting or nowcasting relativistic electron flux at geostationary orbit
Abstract: Poststorm relativistic electron flux enhancement at geosynchronous orbit has shown correlation with very low frequency (VLF) waves measured by satellite in situ. However, our previous study found little correlation between electron flux and VLF measured by a ground-based instrument at Halley, Antarctica. Here we explore several possible explanations for this low correlation. Using 220 storms (1992–2002), our previous work developed a predictive model of the poststorm flux at geosynchronous orbit based on explanatory variables measured a day or two before the flux increase. In a nowcast model, we use averages of variables from the time period when flux is rising during the recovery phase of geomagnetic storms and limit the VLF (1.0 kHz) measure to the dawn period at Halley (09:00–12:0. . .
Date: 03/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: 2052 - 2060 DOI: 10.1002/2014JA020337 Available at: http://doi.wiley.com/10.1002/2014JA020337
More Details
Authors: Lessard Marc R., Lindgren Erik A., Engebretson Mark J, and Weaver Carol
Title: Solar cycle dependence of ion cyclotron wave frequencies
Abstract: Electromagnetic ion cyclotron (EMIC) waves have been studied for decades, though remain a fundamentally important topic in heliospheric physics. The connection of EMIC waves to the scattering of energetic particles from Earth's radiation belts is one ofmany topics that motivate the need for a deeper understanding of characteristics and occurrence distributions of the waves. In this study, we show that EMIC wave frequencies, as observed at Halley Station in Antarctica from 2008 through 2012, increase by approximately 60% from a minimum in 2009 to the end of 2012. Assuming that these waves are excited in the vicinity of the plasmapause, the change in Kp in going from solar minimum to near solar maximum would drive increased plasmapause erosion, potentially shifting the generation region of t. . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020791 Available at: http://doi.wiley.com/10.1002/2014JA020791
More Details
2014
Authors: Li Zan, Millan Robyn M., Hudson Mary K, Woodger Leslie A., Smith David M., et al.
Title: Investigation of EMIC wave scattering as the cause for the BARREL January 17, 2013 relativistic electron precipitation event: a quantitative comparison of simulation with observations
Abstract: Electromagnetic ion cyclotron (EMIC) waves were observed at multiple observatory locations for several hours on 17 January 2013. During the wave activity period, a duskside relativistic electron precipitation (REP) event was observed by one of the BARREL balloons, and was magnetically mapped close to GOES-13. We simulate the relativistic electron pitch-angle diffusion caused by gyroresonant interactions with EMIC waves using wave and particle data measured by multiple instruments on board GOES-13 and the Van Allen Probes. We show that the count rate, the energy distribution and the time variation of the simulated precipitation all agree very well with the balloon observations, suggesting that EMIC wave scattering was likely the cause for the precipitation event. The event reported here is . . .
Date: 12/2014 Publisher: Geophysical Research Letters DOI: 10.1002/2014GL062273 Available at: http://doi.wiley.com/10.1002/2014GL062273
More Details
Authors: Simms Laura E., Pilipenko Viacheslav, Engebretson Mark J, Reeves Geoffrey D, Smith A. J., et al.
Title: Prediction of relativistic electron flux at geostationary orbit following storms: Multiple regression analysis
Abstract: Many solar wind and magnetosphere parameters correlate with relativistic electron flux following storms. These include relativistic electron flux before the storm; seed electron flux; solar wind velocity and number density (and their variation); interplanetary magnetic field Bz, AE and Kp indices; and ultra low frequency (ULF) and very low frequency (VLF) wave power. However, as all these variables are intercorrelated, we use multiple regression analyses to determine which are the most predictive of flux when other variables are controlled. Using 219 storms (1992–2002), we obtained hourly averaged electron fluxes for outer radiation belt relativistic electrons (>1.5 MeV) and seed electrons (100 keV) from Los Alamos National Laboratory spacecraft (geosynchronous orbit). For each storm. . .
Date: 09/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 7297 - 7318 DOI: 10.1002/jgra.v119.910.1002/2014JA019955 Available at: http://doi.wiley.com/10.1002/jgra.v119.9http://doi.wiley.com/10.1002/2014JA019955
More Details
2005
Authors: Horne Richard B, Thorne Richard M, Shprits Yuri Y, Meredith Nigel P, Glauert Sarah A, et al.
Title: Wave acceleration of electrons in the Van Allen radiation belts
Abstract: The Van Allen radiation belts1 are two regions encircling the Earth in which energetic charged particles are trapped inside the Earth's magnetic field. Their properties vary according to solar activity2, 3 and they represent a hazard to satellites and humans in space4, 5. An important challenge has been to explain how the charged particles within these belts are accelerated to very high energies of several million electron volts. Here we show, on the basis of the analysis of a rare event where the outer radiation belt was depleted and then re-formed closer to the Earth6, that the long established theory of acceleration by radial diffusion is inadequate; the electrons are accelerated more effectively by electromagnetic waves at frequencies of a few kilohertz. Wave acceleration can increase . . .
Date: 09/2005 Publisher: Nature Pages: 227 - 230 DOI: 10.1038/nature03939 Available at: http://www.nature.com/nature/journal/v437/n7056/full/nature03939.html
More Details