Biblio

Found 2 results
Filters: Author is Vasiliev, A. A.  [Clear All Filters]
2018
Authors: Mourenas D., Zhang X.-J., Artemyev A. V., Angelopoulos V, Thorne R M, et al.
Title: Electron nonlinear resonant interaction with short and intense parallel chorus wave-packets
Abstract: One of the major drivers of radiation belt dynamics, electron resonant interaction with whistler‐mode chorus waves, is traditionally described using the quasi‐linear diffusion approximation. Such a description satisfactorily explains many observed phenomena, but its applicability can be justified only for sufficiently low intensity, long duration waves. Recent spacecraft observations of a large number of very intense lower band chorus waves (with magnetic field amplitudes sometimes reaching ∼1% of the background) therefore challenge this traditional description, and call for an alternative approach when addressing the global, long‐term effects of the nonlinear interaction of these waves with radiation belt electrons. In this paper, we first use observations from the Van Allen Probe. . .
Date: 05/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025417 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025417
More Details
2014
Authors: Artemyev A. V., Vasiliev A. A., Mourenas D., Agapitov O. V., Krasnoselskikh V., et al.
Title: Fast transport of resonant electrons in phase space due to nonlinear trapping by whistler waves
Abstract: We present an analytical, simplified formulation accounting for the fast transport of relativistic electrons in phase space due to wave-particle resonant interactions in the inhomogeneous magnetic field of Earth's radiation belts. We show that the usual description of the evolution of the particle velocity distribution based on the Fokker-Planck equation can be modified to incorporate nonlinear processes of wave-particle interaction, including particle trapping. Such a modification consists in one additional operator describing fast particle jumps in phase space. The proposed, general approach is used to describe the acceleration of relativistic electrons by oblique whistler waves in the radiation belts. We demonstrate that for a wave power distribution with a hard enough power law tail in. . .
Date: 08/2014 Publisher: Geophysical Research Letters Pages: 5727 - 5733 DOI: 10.1002/grl.v41.1610.1002/2014GL061380 Available at: http://doi.wiley.com/10.1002/grl.v41.16http://doi.wiley.com/10.1002/2014GL061380
More Details