Found 10 results
Filters: Author is Miyoshi, Yoshizumi  [Clear All Filters]
Authors: Takahashi Kazue, Denton Richard E, Motoba Tetsuo, Matsuoka Ayako, Kasaba Yasumasa, et al.
Title: Impulsively Excited Nightside Ultralow Frequency Waves Simultaneously Observed On and Off the Magnetic Equator
Abstract: The Arase spacecraft is capable of observing ultralow‐frequency waves in the inner magnetosphere at intermediate magnetic latitudes, a region sparsely covered by previous space craft missions. We report a series of impulsively excited fundamental toroidal mode standing Alfvén waves in the midnight sector observed by Arase outside the plasmasphere at magnetic latitudes 13–24° . The wave onsets are concurrent with Pi2 onsets detected by the Van Allen Probe B spacecraft at the magnetic equator in the duskside plasmasphere and by ground magnetometers at low latitudes. The duration of each toroidal wave packet is ∼20 min, which is much longer than that of the corresponding Pi2 wave packet. The toroidal waves cannot be the source of high‐latitude Pi2 waves because they were not detecte. . .
Date: 07/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL078731 Available at:
More Details
Authors: Ren Jie, Zong Qiu-Gang, Miyoshi Yoshizumi, Rankin Robert, Spence Harlan E, et al.
Title: A comparative study of ULF waves' role in the dynamics of charged particles in the plasmasphere: Van Allen Probes observation
Abstract: By analyzing observations from Van Allen Probes in its inbound and outbound orbits, we present evidence of coherent enhancement of cold plasmaspheric electrons and ions due to drift‐bounce resonance with ULF waves. From 18:00 UT on 28 May 2017 to 10:00 UT on 29 May 2017, newly formed poloidal mode standing ULF waves with significant electric field oscillations were observed in two consecutive orbits when Probe B was travelling inbound. In contrast to observations during outbound orbits, the cold (< 150 eV) electorns measured by the HOPE instrument were characterized by flux enhancements several times larger and bi‐directional pitch angle distributions during inbound orbits. The electron number density inferred from upper hybrid waves is twice as larger as during inbound orbits, which w. . .
Date: 06/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025255 Available at:
More Details
Authors: Keika Kunihiro, Seki Kanako, é Masahito, Miyoshi Yoshizumi, Lanzerotti Louis J., et al.
Title: Three-Step Buildup of the 17 March 2015 Storm Ring Current: Implication for the Cause of the Unexpected Storm Intensification
Abstract: We examine the spatiotemporal variations of the energy density and the energy spectral evolution of energetic ions in the inner magnetosphere during the main phase of the 17 March 2015 storm, using data from the RBSPICE and EMFISIS instruments onboard Van Allen Probes. The storm developed in response to two southward IMF intervals separated by about 3 h. In contrast to two steps seen in the Dst/SYM-H index, the ring current ion population evolved in three steps: the first subphase was apparently caused by the earlier southward IMF, and the subsequent subphases occurred during the later southward IMF period. Ion energy ranges that contribute to the ring current differed between the three subphases. We suggest that the spectral evolution resulted from the penetration of different plasma shee. . .
Date: 01/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024462 Available at:
More Details
Authors: Turunen Esa, Kero Antti, Verronen Pekka T., Miyoshi Yoshizumi, Oyama Shin-Ichiro, et al.
Title: Mesospheric ozone destruction by high-energy electron precipitation associated with pulsating aurora
Abstract: Energetic particle precipitation into the upper atmosphere creates excess amounts of odd nitrogen and odd hydrogen. These destroy mesospheric and upper stratospheric ozone in catalytic reaction chains, either in situ at the altitude of the energy deposition or indirectly due to transport to other altitudes and latitudes. Recent statistical analysis of satellite data on mesospheric ozone reveals that the variations during energetic electron precipitation from Earth's radiation belts can be tens of percent. Here we report model calculations of ozone destruction due to a single event of pulsating aurora early in the morning on 17 November 2012. The presence of high-energy component in the precipitating electron flux (>200 keV) was detected as ionization down to 68 km altitude, by the VHF inco. . .
Date: 10/2016 Publisher: Journal of Geophysical Research: Atmospheres Pages: 11,852 - 11,861 DOI: 10.1002/2016JD025015 Available at:
More Details
Authors: Keika Kunihiro, Seki Kanako, é Masahito, Machida Shinobu, Miyoshi Yoshizumi, et al.
Title: Storm time impulsive enhancements of energetic oxygen due to adiabatic acceleration of preexisting warm oxygen in the inner magnetosphere
Abstract: We examine enhancements of energetic (>50 keV) oxygen ions observed by the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument on board the Van Allen Probes spacecraft in the inner magnetosphere (L ~ 6) at 22–23 h magnetic local time (MLT) during an injection event of the 6 June 2013 storm. Simultaneous observations by two Van Allen Probes spacecraft located close together (~0.5 RE) indicate that particle injections occurred in the premidnight sector (< ~24 h MLT). We also examine the evolution of the proton and oxygen energy spectra at L ~ 6 during the injection event. The spectral slope did not significantly change during the storm. The oxygen phase space density (PSD) was shifted toward higher PSD in a wide range of the first adiabatic invariant. . .
Date: 08/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: 7739 - 7752 DOI: 10.1002/2016JA022384 Available at:
More Details
Authors: Martinez-Calderon Claudia, Shiokawa Kazuo, Miyoshi Yoshizumi, Keika Kunihiro, Ozaki Mitsunori, et al.
Title: ELF/VLF wave propagation at subauroral latitudes: Conjugate observation between the ground and Van Allen Probes A
Abstract: We report simultaneous observation of ELF/VLF emissions, showing similar spectral and frequency features, between a VLF receiver at Athabasca (ATH), Canada, (L = 4.3) and Van Allen Probes A (Radiation Belt Storm Probes (RBSP) A). Using a statistical database from 1 November 2012 to 31 October 2013, we compared a total of 347 emissions observed on the ground with observations made by RBSP in the magnetosphere. On 25 February 2013, from 12:46 to 13:39 UT in the dawn sector (04–06 magnetic local time (MLT)), we observed a quasiperiodic (QP) emission centered at 4 kHz, and an accompanying short pulse lasting less than a second at 4.8 kHz in the dawn sector (04–06 MLT). RBSP A wave data showed both emissions as right-hand polarized with their Poynting vector earthward to the Northern Hemisp. . .
Date: 06/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: 5384 - 5393 DOI: 10.1002/jgra.v121.610.1002/2015JA022264 Available at:
More Details
Authors: Kurita Satoshi, Miyoshi Yoshizumi, Blake Bernard, Reeves Geoffery D., and Kletzing Craig A.
Title: Relativistic electron microbursts and variations in trapped MeV electron fluxes during the 8-9 October 2012 storm: SAMPEX and Van Allen Probes observations
Abstract: It has been suggested that whistler mode chorus is responsible for both acceleration of MeV electrons and relativistic electron microbursts through resonant wave-particle interactions. Relativistic electron microbursts have been considered as an important loss mechanism of radiation belt electrons. Here we report on the observations of relativistic electron microbursts and flux variations of trapped MeV electrons during the 8–9 October 2012 storm, using the SAMPEX and Van Allen Probes satellites. Observations by the satellites show that relativistic electron microbursts correlate well with the rapid enhancement of trapped MeV electron fluxes by chorus wave-particle interactions, indicating that acceleration by chorus is much more efficient than losses by microbursts during the storm. It . . .
Date: 02/2016 Publisher: Geophysical Research Letters Pages: n/a - n/a DOI: 10.1002/2016GL068260 Available at:
More Details
Authors: Kurita Satoshi, Kadokura Akira, Miyoshi Yoshizumi, Morioka Akira, Sato Yuka, et al.
Title: Relativistic electron precipitations in association with diffuse aurora: Conjugate observation of SAMPEX and the all sky TV camera at Syowa Station
Abstract: It has been believed that whistler mode waves can cause relativistic electron precipitations. It has been also pointed out that pitch angle scattering of ~keV electrons by whistler mode waves results in diffuse auroras. Thus, it is natural to expect relativistic electron precipitations associated with diffuse auroras. Based on a conjugate observation between the SAMPEX spacecraft and the all-sky TV camera at Syowa Station, we report, for the first time, a case in which relativistic electron precipitations are associated with diffuse aurora. The SAMPEX observation shows that the precipitations of >1 MeV electrons are well accompanied with those of >150 and >400 keV electrons. This indicates that electrons in the energy range from several keV to >1 MeV precipitate into the atmosphere s. . .
Date: 06/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL064564 Available at:
More Details
Authors: Shiokawa Kazuo, Yokoyama Yu, Ieda Akimasa, Miyoshi Yoshizumi, Nomura Reiko, et al.
Title: Ground-based ELF/VLF chorus observations at subauroral latitudes-VLF-CHAIN Campaign
Abstract: We report observations of very low frequency (VLF) and extremely low frequency (ELF) chorus waves taken during the ELF/VLF Campaign observation with High-resolution Aurora Imaging Network (VLF-CHAIN) of 17–25 February 2012 at subauroral latitudes at Athabasca (L=4.3), Canada. ELF/VLF waves were measured continuously with a sampling rate of 100 kHz to monitor daily variations in ELF/VLF emissions and derive their detailed structures. We found quasiperiodic (QP) emissions whose repetition period changes rapidly within a period of 1 h without corresponding magnetic pulsations. QP emissions showed positive correlation between amplitude and frequency sweep rate, similarly to rising-tone elements. We found an event of nearly simultaneous enhancements of QP emissions and Pc1/electromagnetic ion. . .
Date: 09/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 7363 - 7379 DOI: 10.1002/jgra.v119.910.1002/2014JA020161 Available at:
More Details
Authors: Miyoshi Yoshizumi
Title: Rebuilding process of the outer radiation belt during the 3 November 1993 magnetic storm: NOAA and Exos-D observations
Abstract: Using the data from the NOAA and Exos-D satellites during the 3 November 1993 magnetic storm, the dynamic behavior of electrons with energies from a few tens of kiloelectronvolts to a few and its relation to plasma waves were examined. After the late main phase, relativistic electron flux started to recover from the heart of the outer radiation belt, where the cold plasma density was extremely low, and intense whistler mode chorus emissions were detected. The phase space density showed a peak in the outer belt, and the peak increased gradually. The simulation of the inward radial diffusion process could not reproduce the observed energy spectrum and phase space density variation. On the other hand, the simulated energy diffusion due to the gyroresonant electron-whistler mode wave interacti. . .
Date: 03/2003 Publisher: Journal of Geophysical Research Pages: SMP 3-1–SMP 3-15 DOI: 10.1029/2001JA007542 Available at:
More Details