Biblio

Found 2 results
Filters: Author is Simms, Laura E.  [Clear All Filters]
2015
Authors: Simms Laura E., Engebretson Mark J, Smith A. J., Clilverd Mark, Pilipenko Viacheslav, et al.
Title: Analysis of the effectiveness of ground-based VLF wave observations for predicting or nowcasting relativistic electron flux at geostationary orbit
Abstract: Poststorm relativistic electron flux enhancement at geosynchronous orbit has shown correlation with very low frequency (VLF) waves measured by satellite in situ. However, our previous study found little correlation between electron flux and VLF measured by a ground-based instrument at Halley, Antarctica. Here we explore several possible explanations for this low correlation. Using 220 storms (1992–2002), our previous work developed a predictive model of the poststorm flux at geosynchronous orbit based on explanatory variables measured a day or two before the flux increase. In a nowcast model, we use averages of variables from the time period when flux is rising during the recovery phase of geomagnetic storms and limit the VLF (1.0 kHz) measure to the dawn period at Halley (09:00–12:0. . .
Date: 03/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: 2052 - 2060 DOI: 10.1002/2014JA020337 Available at: http://doi.wiley.com/10.1002/2014JA020337
More Details
2014
Authors: Simms Laura E., Pilipenko Viacheslav, Engebretson Mark J, Reeves Geoffrey D, Smith A. J., et al.
Title: Prediction of relativistic electron flux at geostationary orbit following storms: Multiple regression analysis
Abstract: Many solar wind and magnetosphere parameters correlate with relativistic electron flux following storms. These include relativistic electron flux before the storm; seed electron flux; solar wind velocity and number density (and their variation); interplanetary magnetic field Bz, AE and Kp indices; and ultra low frequency (ULF) and very low frequency (VLF) wave power. However, as all these variables are intercorrelated, we use multiple regression analyses to determine which are the most predictive of flux when other variables are controlled. Using 219 storms (1992–2002), we obtained hourly averaged electron fluxes for outer radiation belt relativistic electrons (>1.5 MeV) and seed electrons (100 keV) from Los Alamos National Laboratory spacecraft (geosynchronous orbit). For each storm. . .
Date: 09/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 7297 - 7318 DOI: 10.1002/jgra.v119.910.1002/2014JA019955 Available at: http://doi.wiley.com/10.1002/jgra.v119.9http://doi.wiley.com/10.1002/2014JA019955
More Details