Found 6 results
Filters: Author is Cao, J. B.  [Clear All Filters]
Authors: Yu J., Li L. Y., Cui J., Cao J. B., and Wang J.
Title: Effect of Low‐Harmonic Magnetosonic Waves on the Radiation Belt Electrons Inside the Plasmasphere
Abstract: In this paper, we presented two observational cases and simulations to indicate the relationship between the formation of butterfly‐like electron pitch angle distributions and the emission of low‐harmonic (LH) fast magnetosonic (MS) waves inside the high‐density plasmasphere. In the wave emission region, the pitch angle of relativistic (>1 MeV) electrons becomes obvious butterfly‐like distributions for both events (near‐equatorially mirroring electrons are transported to lower pitch angles). Unlike relativistic (>1 MeV) electrons, energetic electrons (<1 MeV) change slightly, except that relatively low‐energy electrons (<~150 keV) show butterfly‐like distributions in the 21 August 2013 event. In theory, the LH MS waves can affect different‐energy electrons through the bounc. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026328 Available at:
More Details
Authors: Yu J., Li L. Y., Cao J. B., Chen L, Wang J., et al.
Title: Propagation characteristics of plasmaspheric hiss: Van Allen Probe observations and global empirical models
Abstract: Based on the Van Allen Probe A observations from 1 October 2012 to 31 December 2014, we develop two empirical models to respectively describe the hiss wave normal angle (WNA) and amplitude variations in the Earth's plasmasphere for different substorm activities. The long-term observations indicate that the plasmaspheric hiss amplitudes on the dayside increase when substorm activity is enhanced (AE index increases), and the dayside hiss amplitudes are greater than the nightside. However, the propagation angles (WNAs) of hiss waves in most regions do not depend strongly on substorm activity, except for the intense substorm-induced increase in WNAs in the nightside low L-region. The propagation angles of plasmaspheric hiss increase with increasing magnetic latitude or decreasing radial distan. . .
Date: 04/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023372 Available at:
More Details
Authors: Li L. Y., Yu J., Cao J. B., Yang J. Y., Li X, et al.
Title: Roles of whistler-mode waves and magnetosonic waves in changing the outer radiation belt and the slot region
Abstract: Using the Van Allen Probe long-term (2013 – 2015) observations and quasi-linear simulations of wave-particle interactions, we examine the combined or competing effects of whistler-mode waves (chorus or hiss) and magnetosonic (MS) waves on energetic (<0.5 MeV) and relativistic (>0.5 MeV) electrons inside and outside the plasmasphere. Although whistler-mode chorus waves and MS waves can singly or jointly accelerate electrons from the hundreds of keV energy to the MeV energy in the low-density trough, most of the relativistic electron enhancement events are best correlated with the chorus wave emissions outside the plasmapause. Inside the plasmasphere, intense plasmaspheric hiss can cause the net loss of relativistic electrons via persistent pitch angle scattering, regardless of whether. . .
Date: 04/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023634 Available at:
More Details
Authors: Yu J., Li L.Y., Cao J. B., Reeves G D, Baker D N, et al.
Title: The influences of solar wind pressure and interplanetary magnetic field on global magnetic field and outer radiation belt electrons
Abstract: Using the Van Allen Probe in-situ measured magnetic field and electron data, we examine the solar wind dynamic pressure and interplanetary magnetic field (IMF) effects on global magnetic field and outer radiation belt relativistic electrons (≥1.8 MeV). The dynamic pressure enhancements (>2nPa) cause the dayside magnetic field increase and the nightside magnetic field reduction, whereas the large southward IMFs (Bz-IMF < -2nT) mainly lead to the decrease of the nightside magnetic field. In the dayside increased magnetic field region (MLT ~ 06:00 - 18:00, and L > 4), the pitch angles of relativistic electrons are mainly pancake distributions with a flux peak around 90o (corresponding anisotropic index A > 0.1), and the higher-energy electrons have stronger pancake distrib. . .
Date: 06/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL069029 Available at:
More Details
Authors: Yu J., Li L.Y., Cao J. B., Yuan Z. G., Reeves G D, et al.
Title: Multiple loss processes of relativistic electrons outside the heart of outer radiation belt during a storm sudden commencement
Abstract: By examining the compression-induced changes in the electron phase space density and pitch angle distribution observed by two satellites of Van Allen Probes (RBSP-A/B), we find that the relativistic electrons (>2MeV) outside the heart of outer radiation belt (L*≥ 5) undergo multiple losses during a storm sudden commencement (SSC). The relativistic electron loss mainly occurs in the field-aligned direction (pitch angle α< 30° or >150°), and the flux decay of the field-aligned electrons is independent of the spatial location variations of the two satellites. However, the relativistic electrons in the pitch angle range of 30°-150° increase (decrease) with the decreasing (increasing) geocentric distance (|ΔL|< 0.25) of the RBSP-B (RBSP-A) location, and the electron fluxes in the quasi-. . .
Date: 11/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021460 Available at:
More Details
Authors: Fu H. S., Cao J. B., Zhima Z., Khotyaintsev Y. V., Angelopoulos V, et al.
Title: First observation of rising-tone magnetosonic waves
Abstract: Magnetosonic (MS) waves are linearly polarized emissions confined near the magnetic equator with wave normal angle near 90° and frequency below the lower hybrid frequency. Such waves, also termed equatorial noise, were traditionally known to be “temporally continuous” in their time-frequency spectrogram. Here we show for the first time that MS waves actually have discrete wave elements with rising-tone features in their spectrogram. The frequency sweep rate of MS waves, ~1 Hz/s, is between that of chorus and electromagnetic ion cyclotron (EMIC) waves. For the two events we analyzed, MS waves occur outside the plasmapause and cannot penetrate into the plasmasphere; their power is smaller than that of chorus. We suggest that the rising-tone feature of MS waves is a consequence of nonl. . .
Date: 11/2014 Publisher: Geophysical Research Letters Pages: 7419 - 7426 DOI: 10.1002/grl.v41.2110.1002/2014GL061867 Available at:
More Details