Biblio

Found 8 results
Filters: Author is Millan, R. M.  [Clear All Filters]
Journal Article
Authors: Millan R M, McCarthy M P, Sample J G, Smith D M, Thompson L D, et al.
Title: The Balloon Array for RBSP Relativistic Electron Losses (BARREL)
Abstract: BARREL is a multiple-balloon investigation designed to study electron losses from Earth’s Radiation Belts. Selected as a NASA Living with a Star Mission of Opportunity, BARREL augments the Radiation Belt Storm Probes mission by providing measurements of relativistic electron precipitation with a pair of Antarctic balloon campaigns that will be conducted during the Austral summers (January-February) of 2013 and 2014. During each campaign, a total of 20 small (∼20 kg) stratospheric balloons will be successively launched to maintain an array of ∼5 payloads spread across ∼6 hours of magnetic local time in the region that magnetically maps to the radiation belts. Each balloon carries an X-ray spectrometer to measure the bremsstrahlung X-rays produced by precipitating relativistic electr. . .
Date: 11/2013 Publisher: Space Science Reviews DOI: 10.1007/s11214-013-9971-z Available at: http://link.springer.com/article/10.1007%2Fs11214-013-9971-z
More Details
Authors: Halford A J, McGregor S. L., Hudson M K, Millan R M, and Kress B T
Title: BARREL observations of a Solar Energetic Electron and Solar Energetic Proton event
Abstract: During the second Balloon Array for Radiation Belt Relativistic Electron Losses (BARREL) campaign two solar energetic proton (SEP) events were observed. Although BARREL was designed to observe X-rays created during electron precipitation events, it is sensitive to X-rays from other sources. The gamma lines produced when energetic protons hit the upper atmosphere are used in this paper to study SEP events. During the second SEP event starting on 7 January 2014 and lasting ∼ 3 days, which also had a solar energetic electron (SEE) event occurring simultaneously, BARREL had 6 payloads afloat spanning all MLT sectors and L-values. Three payloads were in a tight array (∼ 2 hrs in MLT and ∼ 2 Δ L) inside the inner magnetosphere and at times conjugate in both L and MLT with the Van Allen Pr. . .
Date: 04/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: n/a - n/a DOI: 10.1002/2016JA022462 Available at: http://doi.wiley.com/10.1002/2016JA022462http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2016JA022462
More Details
Authors: Halford A J, McGregor S. L., Murphy K. R., Millan R M, Hudson M K, et al.
Title: BARREL observations of an ICME-Shock impact with the magnetosphere and the resultant radiation belt electron loss.
Abstract: The Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) mission of opportunity working in tandem with the Van Allen Probes was designed to study the loss of radiation belt electrons to the ionosphere and upper atmosphere. BARREL is also sensitive to X-rays from other sources. During the second BARREL campaign the Sun produced an X-class flare followed by a solar energetic particle event (SEP) associated with the same active region. Two days later on 9 January 2014 the shock generated by the coronal mass ejection (CME) originating from the active region hit the Earth while BARREL was in a close conjunction with the Van Allen Probes. Time History Events and Macroscale Interactions during Substorms (THEMIS) observed the impact of the ICME-shock near the magnetopause, and th. . .
Date: 03/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020873 Available at: http://doi.wiley.com/10.1002/2014JA020873
More Details
Authors: Ukhorskiy A Y, Sitnov M I, Millan R M, Kress B T, Fennell J. F., et al.
Title: Global Storm-Time Depletion of the Outer Electron Belt
Abstract: The outer radiation belt consists of relativistic (>0.5 MeV) electrons trapped on closed trajectories around Earth where the magnetic field is nearly dipolar. During increased geomagnetic activity, electron intensities in the belt can vary by ordersof magnitude at different spatial and temporal scale. The main phase of geomagnetic storms often produces deep depletions of electron intensities over broad regions of the outer belt. Previous studies identified three possible processes that can contribute to the main-phase depletions: adiabatic inflation of electron drift orbits caused by the ring current growth, electron loss into the atmosphere, and electron escape through the magnetopause boundary. In this paper we investigate the relative importance of the adiabatic effect and magnetopause . . .
Date: 03/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020645 Available at: http://doi.wiley.com/10.1002/2014JA020645
More Details
Authors: Woodger L A, Millan R M, Li Z., and Sample J G
Title: Impact of Background Magnetic Field for EMIC Wave-Driven Electron Precipitation
Abstract: Wave‐particle interaction between relativistic electrons and electromagnetic ion cyclotron (EMIC) waves is a highly debated loss process contributing to the dynamics of Earth's radiation belts. Theoretical studies show that EMIC waves can result in strong loss of relativistic electrons in the radiation belts (Summers & Thorne, 2003, https://doi.org/10.1029/2002JA009489). However, many of these studies have not been validated by observations. Li et al. (2014, https://doi.org/10.1002/2014GL062273) modeled the relativistic electron precipitation observed by Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) in a single‐event case study based on a quasi‐linear diffusion model and observations by Van Allen Probes and GOES 13. We expand upon that study to investigate th. . .
Date: 10/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025315 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025315
More Details
Authors: Anderson B. R., Shekhar S., Millan R M, Crew A. B., Spence H E, et al.
Title: Spatial Scale and Duration of One Microburst Region on 13 August 2015
Abstract: Prior studies of microburst precipitation have largely relied on estimates of the spatial scale and temporal duration of the microburst region in order to determine the radiation belt loss rate of relativistic electrons. These estimates have often relied on the statistical distribution of microburst events. However, few studies have directly observed the spatial and temporal evolution of a single microburst event. In this study, we combine BARREL balloon-borne X-ray measurements with FIREBIRD-II and AeroCube-6 CubeSat electron measurements to determine the spatial and temporal evolution of a microburst region in the morning MLT sector on 13 August 2015. The microburst region is found to extend across at least four hours in local time in the morning sector, from 09:00 to 13:00 MLT, and from. . .
Date: 04/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023752 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023752/full
More Details
Authors: Woodger L A, Halford A J, Millan R M, McCarthy M P, Smith D M, et al.
Title: A Summary of the BARREL Campaigns: Technique for studying electron precipitation
Abstract: The Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) studies the loss of energetic electrons from Earth's radiation belts. BARREL's array of slowly drifting balloon payloads was designed to capitalize on magnetic conjunctions with NASA's Van Allen Probes. Two campaigns were conducted from Antarctica in 2013 and 2014. During the first campaign in January and February of 2013, there were three moderate geomagnetic storms with Sym-Hmin < −40 nT. Similarly, two minor geomagnetic storms occurred during the second campaign, starting in December of 2013 and continuing on into February of 2014. Throughout the two campaigns, BARREL observed electron precipitation over a wide range of energies and exhibiting temporal structure from 100's of milliseconds to hours. Relativistic. . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020874 Available at: http://doi.wiley.com/10.1002/2014JA020874
More Details
Authors: Millan R M
Title: X-ray observations of MeV electron precipitation with a balloon-borne germanium spectrometer
Abstract: The high-resolution germanium detector aboard the MAXIS (MeV Auroral X-ray Imaging and Spectroscopy) balloon payload detected nine X-ray bursts with significant flux extending above 0.5 MeV during an 18 day flight over Antarctica. These minutes-to-hours-long events are characterized by an extremely flat spectrum (∼E−2) similar to the first MeV event discovered in 1996, indicating that the bulk of parent precipitating electrons is at relativistic energies. The MeV bursts were detected between magnetic latitudes 58°–68° (L-values of 3.8–6.7) but only in the late afternoon/dusk sectors (14:30–00:00 MLT), suggesting scattering by EMIC (electromagnetic ion cyclotron) waves as a precipitation mechanism. We estimate the average flux of precipitating E ≥ 0.5 MeV electrons to be ∼36. . .
Date: 12/2002 Publisher: Geophysical Research Letters DOI: 10.1029/2002GL015922 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2002GL015922/full
More Details