Found 4 results
Filters: Author is Gerrard, A.  [Clear All Filters]
Authors: Soto-Chavez A. R., Lanzerotti L J, Manweiler J W, Gerrard A., Cohen R., et al.
Title: Observational evidence of the drift-mirror plasma instability in Earth's inner magnetosphere
Abstract: We report on evidence for the generation of an ultra-low frequency plasma wave by the drift-mirror plasma instability in the dynamic plasma environment of Earth's inner magnetosphere. The plasma measurements are obtained from the Radiation Belt Storm Probes Ion Composition Experiment onboard NASA's Van Allen Probes Satellites. We show that the measured wave-particle interactions are driven by the drift-mirror instability. Theoretical analysis of the data demonstrates that the drift-mirror mode plasma instability condition is well satisfied. We also demonstrate, for the first time, that the measured wave growth rate agrees well with the predicted linear theory growth rate. Hence, the in-situ space plasma observations and theoretical analysis demonstrate that local generation of ultra-low fr. . .
Date: 04/2019 Publisher: Physics of Plasmas Pages: 042110 DOI: 10.1063/1.5083629 Available at:
More Details
Authors: Soto-Chavez A. R., Lanzerotti L J, Gerrard A., Kim H., Bortnik J, et al.
Title: RBSPICE measurement of ion loss during the 2015 March storm: Adiabatic response to the geomagnetic field change
Abstract: A strongly energy-dependent ring current ion loss was measured by the RBSPICE instrument on the Van Allen Probes A spacecraft in the local evening sector during the 17 March 2015 geomagnetic storm. The ion loss is found to be energy dependent where only ions with energies measured above ∼ 150 keV have a significant drop in intensity. At these energies the ion dynamics are principally controlled by variations of the geomagnetic field which, during magnetic storms, exhibits large scale variations on timescales from minutes to hours. Here we show that starting from ∼ 19:10 UTC on March 17 the geomagnetic field increased from 220 to 260 nT on a time scale of about an hour as captured by RBSPICE-A close to spacecraft apogee, L = 6.1 and MLT = 21.85 hr. [GSM coordinates X=-4.89, Y=3.00, . . .
Date: 09/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022512 Available at:
More Details
Authors: Chaston C. C., Bonnell J. W., Wygant J R, Kletzing C A, Reeves G D, et al.
Title: Extreme ionospheric ion energization and electron heating in Alfvén waves in the storm-time inner magnetosphere
Abstract: We report measurements of energized outflowing/bouncing ionospheric ions and heated electrons in the inner magnetosphere during a geomagnetic storm. The ions arrive in the equatorial plane with pitch angles that increase with energy over a range from tens of eV to > 50 keV while the electrons are field-aligned up to ~1 keV. These particle distributions are observed during intervals of broadband low frequency electromagnetic field fluctuations consistent with a Doppler-shifted spectrum of kinetic Alfvén waves and kinetic field-line resonances. The fluctuations extend from L≈3 out to the apogee of the Van Allen Probes spacecraft at L≈6.5. They thereby span most of the L-shell range occupied by the ring current. These measurements suggest a model for ionospheric ion outflow and energizat. . .
Date: 12/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL066674 Available at:
More Details
Authors: Baker D N, Jaynes A. N., Hoxie V C, Thorne R M, Foster J. C., et al.
Title: An impenetrable barrier to ultrarelativistic electrons in the Van Allen radiation belts
Abstract: Early observations1, 2 indicated that the Earth’s Van Allen radiation belts could be separated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. Subsequent studies3, 4 showed that electrons of moderate energy (less than about one megaelectronvolt) often populate both zones, with a deep ‘slot’ region largely devoid of particles between them. There is a region of dense cold plasma around the Earth known as the plasmasphere, the outer boundary of which is called the plasmapause. The two-belt radiation structure was explained as arising from strong electron interactions with plasmaspheric hiss just inside the plasmapause boundary5, with the inner edge of the outer radiation zone corresponding to the minimum plasmapause location6. Re. . .
Date: 11/2014 Publisher: Nature Pages: 531 - 534 DOI: 10.1038/nature13956 Available at:
More Details