Biblio

Found 432 results
Filters: Keyword is Van Allen Probes  [Clear All Filters]

Pages

2017
Authors: Fu Xiangrong, Gary Peter, Reeves Geoffrey D, Winske Dan, and Woodroffe Jesse R.
Title: Generation of Highly Oblique Lower-band Chorus via Nonlinear Three-wave Resonance
Abstract: Chorus in the inner magnetosphere has been observed frequently at geomagnetically active times, typically exhibiting a two-band structure with a quasi-parallel lower-band and an upper-band with a broad range of wave normal angles. But recent observations by Van Allen Probes confirm another type of lower-band chorus, which has a large wave normal angle close to the resonance cone angle. It has been proposed that these waves could be generated by a low-energy beam-like electron component or by temperature anisotropy of keV electrons in the presence of a low-energy plateau-like electron component. This paper, however, presents an alternative mechanism for generation of this highly oblique lower-band chorus. Through a nonlinear three-wave resonance, a quasi-parallel lower-band chorus wave can . . .
Date: 09/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL074411 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL074411/full
More Details
Authors: He Zhaoguo, Chen Lunjin, Zhu Hui, Xia Zhiyang, Reeves G D, et al.
Title: Multiple-satellite observation of magnetic dip event during the substorm on 10 October, 2013
Abstract: We present a multiple-satellite observation of the magnetic dip event during the substorm on October 10, 2013. The observation illustrates the temporal and spatial evolution of the magnetic dip and gives a compelling evidence that ring current ions induce the magnetic dip by enhanced plasma beta. The dip moves with the energetic ions in a comparable drift velocity and affects the dynamics of relativistic electrons in the radiation belt. In addition, the magnetic dip provides a favorable condition for the EMIC wave generation based on the linear theory analysis. The calculated proton diffusion coefficients show that the observed EMIC wave can lead to the pitch angle scattering losses of the ring current ions, which in turn partially relax the magnetic dip in the observations. This study enr. . .
Date: 09/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL074869 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL074869/full
More Details
Authors: Jahn J -M, Goldstein J, Reeves G D, Fernandes P. A., Skoug R M, et al.
Title: The Warm Plasma Composition in the Inner Magnetosphere during 2012-2015
Abstract: Ionospheric heavy ions play an important role in the dynamics of Earth's magnetosphere. The greater mass and gyro radius of ionospheric oxygen differentiates its behavior from protons at the same energies. Oxygen may have an impact on tail reconnection processes, and it can at least temporarily dominate the energy content of the ring current during geomagnetic storms. At sub-keV energies, multi-species ion populations in the inner magnetosphere form the warm plasma cloak, occupying the energy range between the plasmasphere and the ring current. Lastly, cold lighter ions from the mid-latitude ionosphere create the co-rotating plasmasphere whose outer regions can interact with the plasma cloak, plasma sheet, ring current, and outer electron belt. In this paper we present a statistical view o. . .
Date: 09/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024183 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024183/full
More Details
Authors: Souza V. M., Lopez R. E., Jauer P. R., Sibeck D G, Pham K., et al.
Title: Acceleration of radiation belt electrons and the role of the average interplanetary magnetic field B z component in high speed streams
Abstract: In this study we examine the recovery of relativistic radiation belt electrons on November 15-16, 2014, after a previous reduction in the electron flux resulting from the passage of a Corotating Interaction Region (CIR). Following the CIR, there was a period of high-speed streams characterized by large, nonlinear fluctuations in the interplanetary magnetic field (IMF) components. However, the outer radiation belt electron flux remained at a low level for several days before it increased in two major steps. The first increase is associated with the IMF background field turning from slightly northward on average, to slightly southward on average. The second major increase is associated with an increase in the solar wind velocity during a period of southward average IMF background field. We p. . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024187 Available at: onlinelibrary.wiley.com/doi/10.1002/2017JA024187/full
More Details
Authors: Yue Chao, Bortnik Jacob, Thorne Richard M, Ma Qianli, An Xin, et al.
Title: The characteristic pitch angle distributions of 1 eV to 600 keV protons near the equator based on Van Allen Probes observations
Abstract: Understanding the source and loss processes of various plasma populations is greatly aided by having accurate knowledge of their pitch angle distributions (PADs). Here, we statistically analyze ~1 eV to 600 keV hydrogen (H+) PADs near the geomagnetic equator in the inner magnetosphere based on Van Allen Probes measurements, to comprehensively investigate how the H+ PADs vary with different energies, magnetic local times (MLTs), L-shells, and geomagnetic conditions. Our survey clearly indicates four distinct populations with different PADs: (1) a pancake distribution of the plasmaspheric H+ at low L-shells except for dawn sector; (2) a bi-directional field-aligned distribution of the warm plasma cloak; (3) pancake or isotropic distributions of ring current H+; (4) radiation belt particles s. . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024421 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024421/full
More Details
Authors: Aryan Homayon, Sibeck David G., Bin Kang Suk-, Balikhin Michael A., Fok Mei-Ching, et al.
Title: CIMI simulations with newly developed multi-parameter chorus and plasmaspheric hiss wave models
Abstract: Numerical simulation studies of the Earth's radiation belts are important to understand the acceleration and loss of energetic electrons. The Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model considers the effects of the ring current and plasmasphere on the radiation belts to obtain plausible results. The CIMI model incorporates pitch angle, energy, and cross diffusion of electrons, due to chorus and plasmaspheric hiss waves. These parameters are calculated using statistical wave distribution models of chorus and plasmaspheric hiss amplitudes. However, currently these wave distribution models are based only on a single parameter, geomagnetic index (AE), and could potentially underestimate the wave amplitudes. Here we incorporate recently developed multi-parameter chorus and plasmas. . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024159 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024351/full
More Details
Authors: Cattell C., Breneman A., Colpitts C., Dombeck J., Thaller S., et al.
Title: Dayside response of the magnetosphere to a small shock compression: Van Allen Probes, Magnetospheric MultiScale, and GOES-13
Abstract: Observations from Magnetospheric MultiScale (~8 Re) and Van Allen Probes (~5 and 4 Re) show that the initial dayside response to a small interplanetary shock is a double-peaked dawnward electric field, which is distinctly different from the usual bipolar (dawnward and then duskward) signature reported for large shocks. The associated ExB flow is radially inward. The shock compressed the magnetopause to inside 8 Re, as observed by MMS, with a speed that is comparable to the ExB flow. The magnetopause speed and the ExB speeds were significantly less than the propagation speed of the pulse from MMS to the Van Allen Probes and GOES-13, which is consistent with the MHD fast mode. There were increased fluxes of energetic electrons up to several MeV. Signatures of drift echoes and response to ULF. . .
Date: 08/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL074895 Available at: onlinelibrary.wiley.com/doi/10.1002/2017GL074895/full
More Details
Authors: Cohen Ian J., Mitchell Donald G., Kistler Lynn M., Mauk Barry H., Anderson Brian J., et al.
Title: Dominance of high energy (>150 keV) heavy ion intensities in Earth's middle to outer magnetosphere
Abstract: Previous observations have driven the prevailing assumption in the field that energetic ions measured by an instrument using a bare solid state detector (SSD) are predominantly protons. However, new near-equatorial energetic particle observations obtained between 7 and 12 RE during Phase 1 of the Magnetospheric Multiscale (MMS) mission challenge the validity of this assumption. In particular, measurements by the Energetic Ion Spectrometer (EIS) instruments have revealed that the intensities of heavy ion species (specifically oxygen and helium) dominate those of protons at energies math formula150-220 keV in the middle to outer (>7 RE) magnetosphere. Given that relative composition measurements can drift as sensors degrade in gain, quality cross-calibration agreement between EIS observation. . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024351 Available at: onlinelibrary.wiley.com/doi/10.1002/2017JA024351/full
More Details
Authors: Drozdov A. Y., Shprits Y Y, Usanova M. E., Aseev N. A., Kellerman A. C., et al.
Title: EMIC wave parameterization in the long-term VERB code simulation
Abstract: Electromagnetic ion cyclotron (EMIC) waves play an important role in the dynamics of ultrarelativistic electron population in the radiation belts. However, as EMIC waves are very sporadic, developing a parameterization of such wave properties is a challenging task. Currently, there are no dynamic, activity-dependent models of EMIC waves that can be used in the long-term (several months) simulations, which makes the quantitative modeling of the radiation belt dynamics incomplete. In this study, we investigate Kp, Dst, and AE indices, solar wind speed, and dynamic pressure as possible parameters of EMIC wave presence. The EMIC waves are included in the long-term simulations (1 year, including different geomagnetic activity) performed with the Versatile Electron Radiation Belt code, and we co. . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024389 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024389/full
More Details
Authors: Pich Maria de Soria-S, Jun Insoo, and Evans Robin
Title: Empirical radiation belt models: Comparison with in-situ data and implications for environment definition
Abstract: The empirical AP8/AE8 model has been the de-facto Earth's radiation belts engineering reference for decades. The need from the community for a better model incubated the development of AP9/AE9/SPM, which addresses several shortcomings of the old model. We provide additional validation of AP9/AE9 by comparing in-situ electron and proton data from Jason-2, POES, and the Van Allen Probes spacecraft with the 5th, 50th, and 95th percentiles from AE9/AP9 and with the model outputs from AE8/AP8. The relatively short duration of Van Allen Probes and Jason-2 missions means that their measurements are most certainly the result of specific climatological conditions. In LEO, the Jason-2 proton flux is better reproduced by AP8 compared to AP9, while the POES electron data are well enveloped by AE9 5th . . .
Date: 08/2017 Publisher: Space Weather DOI: 10.1002/2017SW001612 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017SW001612/full
More Details
Authors: Ren Jie, Zong Q. G., Miyoshi Y, Zhou X. Z., Wang Y. F., et al.
Title: Low-energy (< 200 eV) electron acceleration by ULF waves in the plasmaspheric boundary layer: Van Allen Probes observation
Abstract: We report observational evidence of cold plamsmaspheric electron (< 200 eV) acceleration by ultra-low-frequency (ULF) waves in the plasmaspheric boundary layer on 10 September 2015. Strongly enhanced cold electron fluxes in the energy spectrogram were observed along with second harmonic mode waves with a period of about 1 minute which lasted several hours during two consecutive Van Allen Probe B orbits. Cold electron (<200 eV) and energetic proton (10-20 keV) bi-directional pitch angle signatures observed during the event are suggestive of the drift-bounce resonance mechanism. The correlation between enhanced energy fluxes and ULF waves leads to the conclusions that plasmaspheric dynamics is strongly affected by ULF waves. Van Allen Probe A and B, GOES 13, GOES 15 and MMS 1 observations su. . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024316 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024316/full
More Details
Authors: Fernandes Philip A., Larsen Brian A., Thomsen Michelle F., Skoug Ruth M., Reeves Geoffrey D, et al.
Title: The plasma environment inside geostationary orbit: A Van Allen Probes HOPE survey
Abstract: The two full precessions in local time completed by the Van Allen Probes enable global specification of the near-equatorial inner magnetosphere plasma environment. Observations by the Helium-Oxygen-Proton-Electron (HOPE) mass spectrometers provide detailed insight into the global spatial distribution of electrons, H+, He+, and O+. Near-equatorial omnidirectional fluxes and abundance ratios at energies 0.1–30 keV are presented for 2 ≤ L ≤ 6 as a function of L shell, magnetic local time (MLT), and geomagnetic activity. We present a new tool built on the UBK modeling technique for classifying plasma sheet particle access to the inner magnetosphere. This new tool generates access maps for particles of constant energy for more direct comparison with in situ measurements, rather than the t. . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024160 Available at: onlinelibrary.wiley.com/doi/10.1002/2017JA024160/full
More Details
Authors: Mozer F S, Agapitov O. V., Hull A., Lejosne S., and Vasko I. Y.
Title: Pulsating auroras produced by interactions of electrons and time domain structures
Abstract: Previous evidence has suggested that either lower band chorus waves or kinetic Alfven waves scatter equatorial kilovolt electrons that propagate to lower altitudes where they precipitate or undergo further low-altitude scattering to make pulsating auroras. Recently, time domain structures (TDSs) were shown, both theoretically and experimentally, to efficiently scatter equatorial electrons. To assess the relative importance of these three mechanisms for production of pulsating auroras, 11 intervals of equatorial THEMIS data and a 4 h interval of Van Allen Probe measurements have been analyzed. During these events, lower band chorus waves produced only negligible modifications of the equatorial electron distributions. During the several TDS events, the equatorial 0.1–3 keV electrons became. . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024223 Available at: onlinelibrary.wiley.com/doi/10.1002/2017JA024223/full
More Details
Authors: Su Zhenpeng, Gao Zhonglei, Zheng Huinan, Wang Yuming, Wang Shui, et al.
Title: Rapid loss of radiation belt relativistic electrons by EMIC waves
Abstract: How relativistic electrons are lost is an important question surrounding the complex dynamics of the Earth's outer radiation belt. Radial loss to the magnetopause and local loss to the atmosphere are two main competing paradigms. Here, on the basis of the analysis of a radiation belt storm event on 27 February 2014, we present new evidence for the EMIC wave-driven local precipitation loss of relativistic electrons in the heart of the outer radiation belt. During the main phase of this storm, the radial profile of relativistic electron phase space density was quasi-monotonic, qualitatively inconsistent with the prediction of radial loss theory. The local loss at low L-shells was required to prevent the development of phase space density peak resulting from the radial loss process at high L-. . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024169 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024169/full
More Details
Authors: Allen R. C., Livi S. A., Vines S. K., Goldstein J, Cohen I., et al.
Title: Storm time empirical model of O + and O 6+ distributions in the magnetosphere
Abstract: Recent studies have utilized different charge states of oxygen ions as a tracer for the origins of plasma populations in the magnetosphere of Earth, using O+ as an indicator of ionospheric-originating plasma and O6+ as an indicator of solar wind-originating plasma. These studies have correlated enhancements in O6+ to various solar wind and geomagnetic conditions to characterize the dominant solar wind injection mechanisms into the magnetosphere but did not include analysis of the temporal evolution of these ions. A sixth-order Fourier expansion model based empirically on a superposed epoch analysis of geomagnetic storms observed by Polar is presented in this study to provide insight into the evolution of both ionospheric-originating and solar wind-originating plasma throughout geomagnetic . . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024245 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024245/full
More Details
Authors: Lejosne ène, and Mozer F S
Title: Sub-Auroral Polarization Stream (SAPS) duration as determined from Van Allen Probe successive electric drift measurements
Abstract: We examine a characteristic feature of the magnetosphere-ionosphere coupling, namely, the persistent and latitudinally narrow bands of rapid westward ion drifts called the Sub-Auroral Polarization Streams (SAPS). Despite countless works on SAPS, information relative to their durations is lacking. Here, we report on the first statistical analysis of more than 200 near-equatorial SAPS observations based on more than two years of Van Allen Probe electric drift measurements. First, we present results relative to SAPS radial locations and amplitudes. Then, we introduce two different ways to estimate SAPS durations. In both cases, SAPS activity is estimated to last for about nine hours on average. However, our estimates for SAPS duration are limited either by the relatively long orbital periods . . .
Date: 08/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL074985 Available at: http://http://onlinelibrary.wiley.com/doi/10.1002/2017GL074985/full
More Details
Authors: Xiang Zheng, Tu Weichao, Li Xinlin, Ni Binbin, Morley S. K., et al.
Title: Understanding the Mechanisms of Radiation Belt Dropouts Observed by Van Allen Probes
Abstract: To achieve a better understanding of the dominant loss mechanisms for the rapid dropouts of radiation belt electrons, three distinct radiation belt dropout events observed by Van Allen Probes are comprehensively investigated. For each event, observations of the pitch angle distribution of electron fluxes and electromagnetic ion cyclotron (EMIC) waves are analyzed to determine the effects of atmospheric precipitation loss due to pitch angle scattering induced by EMIC waves. Last closed drift shells (LCDS) and magnetopause standoff position are obtained to evaluate the effects of magnetopause shadowing loss. Evolution of electron phase space density (PSD) versus L* profiles and the μ and K (first and second adiabatic invariants) dependence of the electron PSD drops are calculated to further. . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024487 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024487/full
More Details
Authors: Su Zhenpeng, Wang Geng, Liu Nigang, Zheng Huinan, Wang Yuming, et al.
Title: Direct observation of generation and propagation of magnetosonic waves following substorm injection
Abstract: Magnetosonic whistler mode waves play an important role in the radiation belt electron dynamics. Previous theory has suggested that these waves are excited by the ring distributions of hot protons and can propagate radially and azimuthally over a broad spatial range. However, because of the challenging requirements on satellite locations and data-processing techniques, this theory was difficult to validate directly. Here we present some experimental tests of the theory on the basis of Van Allen Probes observations of magnetosonic waves following substorm injections. At higher L-shells with significant substorm injections, the discrete magnetosonic emission lines started approximately at the proton gyrofrequency harmonics, qualitatively consistent with the prediction of linear proton Bernst. . .
Date: 07/2018 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL074362 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL074362/full
More Details
Authors: Zhang X.-J., Mourenas D., Artemyev A. V., Angelopoulos V, and Thorne R M
Title: Contemporaneous EMIC and Whistler-Mode Waves: Observations and Consequences for MeV Electron Loss
Abstract: The high variability of relativistic (MeV) electron fluxes in the Earth's radiation belts is partly controlled by loss processes involving resonant interactions with electromagnetic ion cyclotron (EMIC) and whistler-mode waves. But as previous statistical models were generated independently for each wave mode, whether simultaneous electron scattering by the two wave types has global importance remains an open question. Using >3 years of simultaneous Van Allen Probes and THEMIS measurements, we explore the contemporaneous presence of EMIC and whistler-mode waves in the same L-shell, albeit at different local times, determining the distribution of wave and plasma parameters as a function of L, Kp, and AE. We derive electron lifetimes from observations and provide the first statistics of comb. . .
Date: 07/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL073886 Available at: onlinelibrary.wiley.com/doi/10.1002/2017GL073886/full
More Details
Authors: Yu Xiongdong, Yuan Zhigang, Huang Shiyong, Wang Dedong, Li Haimeng, et al.
Title: EMIC waves covering wide L shells: MMS and Van Allen Probes observations
Abstract: During 04:45:00–08:15:00 UT on 13 September in 2015, a case of Electromagnetic ion cyclotron (EMIC) waves covering wide L shells (L = 3.6–9.4), observed by the Magnotospheric Multiscale 1 (MMS1) are reported. During the same time interval, EMIC waves observed by Van Allen Probes A (VAP-A) only occurred just outside the plasmapause. As the Van Allen Probes moved outside into a more tenuous plasma region, no intense waves were observed. Combined observations of MMS1 and VAP-A suggest that in the terrestrial magnetosphere, an appropriately dense background plasma would make contributions to the growth of EMIC waves in lower L shells, while the ion anisotropy, driven by magnetospheric compression, might play an important role in the excitation of EMIC waves in higher L shells. These EMIC w. . .
Date: 07/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA023982 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA023982/full
More Details
Authors: Yuan Zhigang, Yu Xiongdong, Huang Shiyong, Wang Dedong, and Funsten Herbert O.
Title: In situ observations of magnetosonic waves modulated by background plasma density
Abstract: We report in situ observations by the Van Allen Probe mission that magnetosonic (MS) waves are clearly relevant to appear relevant to the background plasma number density. As the satellite moved across dense and tenuous plasma alternatively, MS waves occurred only in lower density region. As the observed protons with ‘ring’ distributions provide free energy, local linear growth rates are calculated and show that magnetosonic waves can be locally excited in tenuous plasma. With variations of the background plasma density, the temporal variations of local wave growth rates calculated with the observed proton ring distributions, show a remarkable agreement with those of the observed wave amplitude. Therefore, the paper provides a direct proof that background plasma densities can modulate . . .
Date: 07/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL074681 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL074681/full
More Details
Authors: Lejosne ène, Maus Stefan, and Mozer F S
Title: Model-observation comparison for the geographic variability of the plasma electric drift in the Earth's innermost magnetosphere
Abstract: Plasmaspheric rotation is known to lag behind Earth rotation. The causes for this corotation lag are not yet fully understood. We have used more than two years of Van Allen Probe observations to compare the electric drift measured below L~2 with the predictions of a general model. In the first step, a rigid corotation of the ionosphere with the solid Earth was assumed in the model. The results of the model-observation comparison are twofold: (1) radially, the model explains the average observed geographic variability of the electric drift; (2) azimuthally, the model fails to explain the full amplitude of the observed corotation lag. In the second step, ionospheric corotation was modulated in the model by thermospheric winds, as given by the latest version of the Horizontal Wind Model (HWM1. . .
Date: 07/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL074862 Available at: onlinelibrary.wiley.com/doi/10.1002/2017GL074862/full
More Details
Authors: Chaston C. C., Bonnell J. W., Wygant J R, Reeves G D, Baker D N, et al.
Title: Radial transport of radiation belt electrons in kinetic field-line resonances
Abstract: A representative case study from the Van Allen Probes during a geomagnetic storm recovery phase reveals enhanced electron fluxes at intermediate pitch angles over energies from ~100 keV to 5 MeV coincident with broadband low frequency electromagnetic waves. The statistical properties of these waves are used to build a model for radial diffusion via drift-bounce resonances in kinetic Alfvén eigenmodes/kinetic field-line resonances. Estimated diffusion coefficients indicate timescales for radial transport of the order of hours in storm-time events at energies from <100 keV to MeVs over equatorial pitch angles from the edge of the loss cone to nearly perpendicular to the geomagnetic field. The correlation of kinetic resonances with electron depletions and enhancements during storm main phase. . .
Date: 07/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL074587 Available at: onlinelibrary.wiley.com/doi/10.1002/2017GL074587/full
More Details
Authors: Hao Y. X., Zong Q.-G., Zhou X.-Z., Rankin R, Chen X. R., et al.
Title: Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: Boomerang-shaped pitch angle evolutions
Abstract: We present an analysis of “boomerang-shaped” pitch angle evolutions of outer radiation belt relativistic electrons observed by the Van Allen Probes after the passage of an interplanetary shock on June 7th, 2014. The flux at different pitch angles is modulated by Pc5 waves, with equatorially mirroring electrons reaching the satellite first. For 90∘ pitch angle electrons, the phase change of the flux modulations across energy exceeds 180∘, and increasingly tilts with time. Using estimates of the arrival time of particles of different pitch angles at the spacecraft location, a scenario is investigated in which shock-induced ULF waves interact with electrons through the drift resonance mechanism in a localized region westward of the spacecraft. Numerical calculations on particle energy. . .
Date: 07/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL074006 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL074006/full
More Details
Authors: Malaspina David M., Jaynes Allison N, Hospodarsky George, Bortnik Jacob, Ergun Robert E, et al.
Title: Statistical Properties of Low Frequency Plasmaspheric Hiss
Abstract: Plasmaspheric hiss is an important wave mode for the dynamics of inner terrestrial magnetosphere plasma populations. It acts to scatter high energy electrons out of trapped orbits about Earth and into the atmosphere, defining the inner edge of the radiation belts over a range of energies. A low-frequency component of hiss was recently identified and is important for its ability to interact with higher energy electrons compared to typically considered hiss frequencies. This study compares the statistical properties of low and high frequency plasmaspheric hiss in the terrestrial magnetosphere, demonstrating that they are statistically distinct wave populations. Low frequency hiss shows different behavior in frequency space, different spatial localization (in magnetic local time and radial di. . .
Date: 07/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024328 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024328/full
More Details
Authors: Shen Xiao-Chen, Hudson Mary, Jaynes Allison, Shi Quanqi, Tian Anmin, et al.
Title: Statistical study of the storm-time radiation belt evolution during Van Allen Probes era: CME- versus CIR-driven storms
Abstract: CME- or CIR-driven storms can change the electron distributions in the radiation belt dramatically, which can in turn affect the spacecraft in this region or induce geomagnetic effects. The Van Allen Probes twin spacecraft, launched on 30 August 2012, orbit near the equatorial plane and across a wide range of L∗ with apogee at 5.8 RE and perigee at 620 km. Electron data from Van Allen Probes MagEIS and REPT instruments have been binned every six hours at L∗=3 (defined as 2.5 Date: 07/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024100 Available at: onlinelibrary.wiley.com/doi/10.1002/2017JA024100/full
More Details
Authors: Ripoll J.-F., Santol?k O., Reeves G., Kurth W S, Denton M., et al.
Title: Effects of whistler mode hiss waves in March 2013
Abstract: We present simulations of the loss of radiation belt electrons by resonant pitch angle diffusion caused by whistler mode hiss waves for March 2013. Pitch angle diffusion coefficients are computed from the wave properties and the ambient plasma data obtained by the Van Allen Probes with a resolution of 8 hours and 0.1 L-shell. Loss rates follow a complex dynamic structure, imposed by the wave and plasma properties. Hiss effects can be strong, with minimum lifetimes (of ~1 day) moving from energies of ~100 keV at L~5 up to ~2 MeV at L~2, and stop abruptly, similarly to the observed energy-dependent inner belt edge. Periods when the plasmasphere extends beyond L~5 favor long-lasting hiss losses from the outer belt. Such loss rates are embedded in a reduced Fokker-Planck code and validated aga. . .
Date: 06/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024139 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024139/full
More Details
Authors: Sarris Theodore E., Li Xinlin, Temerin Michael, Zhao Hong, Califf Sam, et al.
Title: On the Relationship Between Electron Flux Oscillations and ULF Wave-Driven Radial Transport
Abstract: The objective of this study is to investigate the relationship between the levels of electron flux oscillations and radial diffusion for different Phase Space Density (PSD) gradients, through observation and particle tracing simulations under the effect of model Ultra Low Frequency (ULF) fluctuations. This investigation aims to demonstrate that electron flux oscillation is associated with and could be used as an indicator of ongoing radial diffusion. To this direction, flux oscillations are observed through the Van Allen Probes’ MagEIS energetic particle detector; subsequently, flux oscillations are produced in a particle tracing model that simulates radial diffusion by using model magnetic and electric field fluctuations that are approximating measured magnetic and electric field fluctu. . .
Date: 06/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023741 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023741/full
More Details
Authors: Hwang J., Shin D. K., Yoon P. H., Kurth W S, Larsen B A, et al.
Title: Roles of hot electrons in generating upper-hybrid waves in the earth's radiation belt
Abstract: Electrostatic fluctuations near upper-hybrid frequency, which are sometimes accompanied by multiple-harmonic electron cyclotron frequency bands above and below the upper-hybrid frequency, are common occurrences in the Earth's radiation belt, as revealed through the twin Van Allen Probe spacecrafts. It is customary to use the upper-hybrid emissions for estimating the background electron density, which in turn can be used to determine the plasmapause locations, but the role of hot electrons in generating such fluctuations has not been discussed in detail. The present paper carries out detailed analyses of data from the Waves instrument, which is part of the Electric and Magnetic Field Instrument Suite and Integrated Science suite onboard the Van Allen Probes. Combined with the theoretical ca. . .
Date: 06/2017 Publisher: Physics of Plasmas Pages: 062904 DOI: 10.1063/1.4984249 Available at: http://aip.scitation.org/doi/10.1063/1.4984249
More Details
Authors: Li Zhao, Hudson Mary, Patel Maulik, Wiltberger Michael, Boyd Alex, et al.
Title: ULF Wave Analysis and Radial Diffusion Calculation Using a Global MHD Model for the 17 March 2013 and 2015 Storms
Abstract: The 17 March 2015 St. Patrick's Day Storm is the largest geomagnetic storm to date of Solar Cycle 24, with a Dst of -223 nT. The magnetopause moved inside geosynchronous orbit under high solar wind dynamic pressure and strong southward IMF Bz causing loss, however a subsequent drop in pressure allowed for rapid rebuilding of the radiation belts. The 17 March 2013 storm also shows similar effects on outer zone electrons: first a rapid dropout due to inward motion of the magnetopause followed by rapid increase in flux above the pre-storm level early in the recovery phase and a slow increase over the next 12 days. These phases can be seen in temporal evolution of the electron phase space density measured by the ECT instruments on Van Allen Probes. Using the Lyon-Fedder-Mobarry global MHD m. . .
Date: 06/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023846 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023846/full
More Details
Authors: Yang Xiaochao, Ni Binbin, Yu Jiang, Zhang Yang, Zhang Xiaoxin, et al.
Title: Unusual refilling of the slot region between the Van Allen radiation belts from November 2004 to January 2005
Abstract: Using multisatellite measurements, a uniquely strong and long-lived relativistic electron slot region refilling event from November 2004 to January 2005 is investigated. This event occurred under remarkable interplanetary and magnetospheric conditions. Both empirically modeled and observationally estimated plasmapause locations demonstrate that the plasmasphere eroded significantly prior to the enhancement phase of this event. The estimated diffusion coefficients indicate that the radial diffusion due to ULF waves is insufficient to account for the observed enhancement of slot region electrons. However, the diffusion coefficients evaluated using the distribution of chorus wave intensities derived from low-altitude POES electron observations indicate that the local acceleration induced by c. . .
Date: 06/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023204 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023204/full
More Details
Authors: Gao Zhonglei, Su Zhenpeng, Chen Lunjin, Zheng Huinan, Wang Yuming, et al.
Title: Van Allen Probes observations of whistler-mode chorus with long-lived oscillating tones
Abstract: Whistler-mode chorus plays an important role in the radiation belt electron dynamics. In the frequency-time spectrogram, chorus often appears as a hiss-like band and/or a series of short-lived (up to ∼1 s) discrete elements. Here we present some rarely reported chorus emissions with long-lived (up to 25 s) oscillating tones observed by the Van Allen Probes in the dayside (MLT ∼9–14) midlatitude (|MLAT|>15°) region. An oscillating tone can behave either regularly or irregularly and can even transform into a nearly constant tone (with a relatively narrow frequency sweep range). We suggest that these highly coherent oscillating tones were generated naturally rather than being related to some artificial VLF transmitters. Possible scenarios for the generation of the oscillating tone chor. . .
Date: 06/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL073420 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL073420/full
More Details
Authors: Ma Qianli, Mourenas Didier, Li Wen, Artemyev Anton, and Thorne Richard M
Title: VLF waves from ground-based transmitters observed by the Van Allen Probes: Statistical model and effects on plasmaspheric electrons
Abstract: Whistler-mode Very Low Frequency (VLF) waves from powerful ground-based transmitters can resonantly scatter energetic plasmaspheric electrons and precipitate them into the atmosphere. A comprehensive 4-year statistics of Van Allen Probes measurements is carried out to assess their consequences on the dynamics of the inner radiation belt and slot region. Statistical models of the measured wave electric field power and of the inferred full wave magnetic amplitude are provided as a function of L, magnetic local time, season, and Kp over L=1-3, revealing the localization of VLF wave intensity and its variation with geomagnetic activity over 2012-2016. Since this VLF wave model can be directly used together with existing hiss and lightning-generated wave models in radiation belt simulation code. . .
Date: 06/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL073885 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL073885/full
More Details
Authors: Kim Kyung-Chan, and Shprits Yuri
Title: Dependence of the amplitude of magnetosonic waves on the solar wind and AE index using Van Allen Probes
Abstract: We present the dependence of the magnetosonic wave amplitudes both outside and inside the plasmapause on the solar wind and AE index using Van Allen Probe-A spacecraft during the time period of 1 October 2012 to 31 December 2015, based on a correlation and regression analysis. Solar wind parameters considered are the southward interplanetary magnetic field (IMF BS), solar wind number density (NSW), and bulk speed (VSW). We find that the wave amplitudes outside (inside) the plasmapause are well correlated with the preceding AE, IMF BS, and NSW with time delays, each corresponding to 2–3 h (3–4 h), 4–5 h (3–4 h), and 2–3 h (8–9 h), while the correlation with VSW is ambiguous both inside and outside the plasmapause. As measured by the correlation coefficient, the IMF BS is the mos. . .
Date: 05/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024094 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024094/full
More Details
Authors: Vasko I. Y., Agapitov O. V., Mozer F S, Bonnell J. W., Artemyev A. V., et al.
Title: Electron-acoustic solitons and double layers in the inner magnetosphere
Abstract: The Van Allen Probes observe generally two types of electrostatic solitary waves (ESW) contributing to the broadband electrostatic wave activity in the nightside inner magnetosphere. ESW with symmetric bipolar parallel electric field are electron phase space holes. The nature of ESW with asymmetric bipolar (and almost unipolar) parallel electric field has remained puzzling. To address their nature, we consider a particular event observed by Van Allen Probes to argue that during the broadband wave activity electrons with energy above 200 eV provide the dominant contribution to the total electron density, while the density of cold electrons (below a few eV) is less than a few tenths of the total electron density. We show that velocities of the asymmetric ESW are close to velocity of electron. . .
Date: 05/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL074026 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL074026/full
More Details
Authors: Oyama S., Kero A., Rodger C. J., Clilverd M A, Miyoshi Y, et al.
Title: Energetic electron precipitation and auroral morphology at the substorm recovery phase
Abstract: It is well known that auroral patterns at the substorm recovery phase are characterized by diffuse or patch structures with intensity pulsation. According to satellite measurements and simulation studies, the precipitating electrons associated with these aurorae can reach or exceed energies of a few hundreds of keV through resonant wave-particle interactions in the magnetosphere. However, because of difficulty of simultaneous measurements, the dependency of energetic electron precipitation (EEP) on auroral morphological changes in the mesoscale has not been investigated to date. In order to study this dependency, we have analyzed data from the European Incoherent Scatter (EISCAT) radar, the Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA) riometer, collocated cameras, ground-based m. . .
Date: 05/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023484 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023484/full
More Details
Authors: Zhou Qinghua, Xiao Fuliang, Yang Chang, Liu Si, He Yihua, et al.
Title: Generation of lower and upper bands of electrostatic electron cyclotron harmonic waves in the Van Allen radiation belts
Abstract: Electrostatic electron cyclotron harmonic (ECH) waves generated by the electron loss cone distribution can produce efficient scattering loss of plasma sheet electrons, which has a significant effect on the dynamics in the outer magnetosphere. Here we report two ECH emission events around the same location L≈ 5.7–5.8, MLT ≈ 12 from Van Allen Probes on 11 February (event A) and 9 January 2014 (event B), respectively. The spectrum of ECH waves was centered at the lower half of the harmonic bands during event A, but the upper half during event B. The observed electron phase space density in both events is fitted by the subtracted bi-Maxwellian distribution, and the fitting functions are used to evaluate the local growth rates of ECH waves based on a linear theory for homogeneous plasmas.. . .
Date: 05/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL073051 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL073051/full
More Details
Authors: Min Kyungguk, Denton Richard E, Liu Kaijun, Gary Peter, and Spence Harlan E.
Title: Ion Bernstein instability as a possible source for oxygen ion cyclotron harmonic waves
Abstract: This paper demonstrates that an ion Bernstein instability can be a possible source for recently reported electromagnetic waves with frequencies at or near the singly ionized oxygen ion cyclotron frequency, inline image, and its harmonics. The particle measurements during strong wave activity revealed a relatively high concentration of oxygen ions (∼15%) whose phase space density exhibits a local peak at energy ∼20 keV. Given that the electron plasma-to-cyclotron frequency ratio is inline image, this energy corresponds to the particle speed inline image, where vA is the oxygen Alfvén speed. Using the observational key plasma parameters, a simplified ion velocity distribution is constructed, where the local peak in the oxygen ion velocity distribution is represented by an isotropic s. . .
Date: 05/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA023979 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA023979/full
More Details
Authors: Tang C. L., Wang Y. X., Ni B, Zhang J.-C., Reeves G D, et al.
Title: Radiation belt seed population and its association with the relativistic electron dynamics: A statistical study
Abstract: Using the particle data measured by Van Allen Probe A from October 2012 to March 2016, we investigate in detail the radiation belt seed population and its association with the relativistic electron dynamics during 74 geomagnetic storms. The period of the storm recovery phase was limited to 72 h. The statistical study shows that geomagnetic storms and substorms play important roles in the radiation belt seed population (336 keV electrons) dynamics. Based on the flux changes of 1 MeV electrons before and after the storm peak, these storm events are divided into two groups of “large flux enhancement” and “small flux enhancement.” For large flux enhancement storm events, the correlation coefficients between the peak flux location of the seed population and those of relativistic electro. . .
Date: 05/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA023905 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA023905/full
More Details
Authors: Xiong Ying, Chen Lunjin, Xie Lun, Fu Suiyan, Xia Zhiyang, et al.
Title: Relativistic electron's butterfly pitch angle distribution modulated by localized background magnetic field perturbation driven by hot ring current ions
Abstract: Dayside modulated relativistic electron's butterfly pitch angle distributions (PADs) from ∼200 keV to 2.6 MeV were observed by Van Allen Probe B at L = 5.3 on 15 November 2013. They were associated with localized magnetic dip driven by hot ring current ion (60–100 keV proton and 60–200 keV helium and oxygen) injections. We reproduce the electron's butterfly PADs at satellite's location using test particle simulation. The simulation results illustrate that a negative radial flux gradient contributes primarily to the formation of the modulated electron's butterfly PADs through inward transport due to the inductive electric field, while deceleration due to the inductive electric field and pitch angle change also makes in part contribution. We suggest that localized magnetic field pertur. . .
Date: 05/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL072558 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL072558/full
More Details
Authors: Lanzerotti Louis J., and Baker Daniel N
Title: Space Weather Research: Earth's Radiation Belts
Abstract: Fundamental research on Earth's space radiation environment is essential for the design and the operations of modern technologies – for communications, weather, navigation, national security – that fly in the hostile space weather conditions above Earth's atmosphere. As the technologies become ever more advanced, more sophisticated understanding – and even predictability – of the environment is required for mission success
Date: 05/2017 Publisher: Space Weather DOI: 10.1002/2017SW001654 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017SW001654/full
More Details
Authors: Cho J.-H., Lee D.-Y., Noh S.-J., Kim H., Choi C. R., et al.
Title: Spatial dependence of electromagnetic ion cyclotron waves triggered by solar wind dynamic pressure enhancements
Abstract: In this paper, using the multisatellite (the Van Allen Probes and two GOES satellites) observations in the inner magnetosphere, we examine two electromagnetic ion cyclotron (EMIC) wave events that are triggered by Pdyn enhancements under prolonged northward interplanetary magnetic field quiet time preconditions. For both events, the impact of enhanced Pdyn causes EMIC waves at multiple points. However, we find a strong spatial dependence that EMIC waves due to enhanced Pdyn impact can occur at multiple points (likely globally but not necessarily everywhere) but with different wave properties. For Event 1, three satellites situated at a nearly same dawnside zone but at slightly different L shells see occurrence of EMIC waves but in different frequencies relative to local ion gyrofrequencies. . .
Date: 05/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023827 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023827/full
More Details
Authors: Crabtree Chris, Tejero Erik, Ganguli Gurudas, Hospodarsky George B., and Kletzing Craig A.
Title: Bayesian Spectral Analysis of Chorus Sub-Elements from the Van Allen Probes
Abstract: We develop a Bayesian spectral analysis technique that calculates the probability distribution functions of a superposition of wave-modes each described by a linear growth rate, a frequency and a chirp rate. The Bayesian framework has a number of advantages, including 1) reducing the parameter space by integrating over the amplitude and phase of the wave, 2) incorporating the data from each channel to determine the model parameters such as frequency which leads to high resolution results in frequency and time, 3) the ability to consider the superposition of waves where the wave-parameters are closely spaced, 4) the ability to directly calculate the expectation value of wave parameters without resorting to ensemble averages, 5) the ability to calculate error bars on model parameters. We exa. . .
Date: 04/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023547 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023547/full
More Details
Authors: Le G., Chi P. J., Strangeway R J, Russell C. T., Slavin J. A., et al.
Title: Global observations of magnetospheric high- m poloidal waves during the 22 June 2015 magnetic storm
Abstract: We report global observations of high-m poloidal waves during the recovery phase of the 22 June 2015 magnetic storm from a constellation of widely spaced satellites of five missions including Magnetospheric Multiscale (MMS), Van Allen Probes, Time History of Events and Macroscale Interactions during Substorm (THEMIS), Cluster, and Geostationary Operational Environmental Satellites (GOES). The combined observations demonstrate the global spatial extent of storm time poloidal waves. MMS observations confirm high azimuthal wave numbers (m ~ 100). Mode identification indicates the waves are associated with the second harmonic of field line resonances. The wave frequencies exhibit a decreasing trend as L increases, distinguishing them from the single-frequency global poloidal modes normally obs. . .
Date: 04/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL073048 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL073048/full
More Details
Authors: Wang Chih-Ping, Thorne Richard, Liu Terry Z., Hartinger Michael D., Nagai Tsugunobu, et al.
Title: A multi-spacecraft event study of Pc5 ultra low frequency waves in the magnetosphere and their external drivers
Abstract: We investigate a quiet-time event of magnetospheric Pc5 ultra low frequency (ULF) waves and their likely external drivers using multiple spacecraft observations. Enhancements of electric and magnetic field perturbations in two narrow frequency bands, 1.5-2 mHz and 3.5-4 mHz, were observed over a large radial distance range from r ~5 to 11 RE. During the first half of this event, perturbations were mainly observed in the transverse components and only in the 3.5-4 mHz band. In comparison, enhancements were stronger during the second half in both transverse and compressional components and in both frequency bands. No indication of field line resonances was found for these magnetic field perturbations. Perturbations in these two bands were also observed in the magnetosheath, but not in the so. . .
Date: 04/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023610 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023610/full
More Details
Authors: Yu J., Li L. Y., Cao J. B., Chen L, Wang J., et al.
Title: Propagation characteristics of plasmaspheric hiss: Van Allen Probe observations and global empirical models
Abstract: Based on the Van Allen Probe A observations from 1 October 2012 to 31 December 2014, we develop two empirical models to respectively describe the hiss wave normal angle (WNA) and amplitude variations in the Earth's plasmasphere for different substorm activities. The long-term observations indicate that the plasmaspheric hiss amplitudes on the dayside increase when substorm activity is enhanced (AE index increases), and the dayside hiss amplitudes are greater than the nightside. However, the propagation angles (WNAs) of hiss waves in most regions do not depend strongly on substorm activity, except for the intense substorm-induced increase in WNAs in the nightside low L-region. The propagation angles of plasmaspheric hiss increase with increasing magnetic latitude or decreasing radial distan. . .
Date: 04/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023372 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023372/full
More Details
Authors: Li L. Y., Yu J., Cao J. B., Yang J. Y., Li X, et al.
Title: Roles of whistler-mode waves and magnetosonic waves in changing the outer radiation belt and the slot region
Abstract: Using the Van Allen Probe long-term (2013 – 2015) observations and quasi-linear simulations of wave-particle interactions, we examine the combined or competing effects of whistler-mode waves (chorus or hiss) and magnetosonic (MS) waves on energetic (<0.5 MeV) and relativistic (>0.5 MeV) electrons inside and outside the plasmasphere. Although whistler-mode chorus waves and MS waves can singly or jointly accelerate electrons from the hundreds of keV energy to the MeV energy in the low-density trough, most of the relativistic electron enhancement events are best correlated with the chorus wave emissions outside the plasmapause. Inside the plasmasphere, intense plasmaspheric hiss can cause the net loss of relativistic electrons via persistent pitch angle scattering, regardless of whether. . .
Date: 04/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023634 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023634/full
More Details
Authors: Anderson B. R., Shekhar S., Millan R M, Crew A. B., Spence H E, et al.
Title: Spatial Scale and Duration of One Microburst Region on 13 August 2015
Abstract: Prior studies of microburst precipitation have largely relied on estimates of the spatial scale and temporal duration of the microburst region in order to determine the radiation belt loss rate of relativistic electrons. These estimates have often relied on the statistical distribution of microburst events. However, few studies have directly observed the spatial and temporal evolution of a single microburst event. In this study, we combine BARREL balloon-borne X-ray measurements with FIREBIRD-II and AeroCube-6 CubeSat electron measurements to determine the spatial and temporal evolution of a microburst region in the morning MLT sector on 13 August 2015. The microburst region is found to extend across at least four hours in local time in the morning sector, from 09:00 to 13:00 MLT, and from. . .
Date: 04/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023752 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023752/full
More Details
Authors: Crabtree Chris, Ganguli Gurudas, and Tejero Erik
Title: Analysis of self-consistent nonlinear wave-particle interactions of whistler waves in laboratory and space plasmas
Abstract: Whistler mode chorus is one of the most important emissions affecting the energization of the radiation belts. Recent laboratory experiments that inject energetic electron beams into a cold plasma have revealed several spectral features in the nonlinear evolution of these instabilities that have also been observed in high-time resolution in situ wave-form data. These features include (1) a sub-element structure which consists of an amplitude modulation on time-scales slower than the bounce time, (2) closely spaced discrete frequency hopping that results in a faster apparent frequency chirp rate, (3) fast frequency changes near the sub-element boundaries, and (4) harmonic generation. In this paper, we develop a finite dimensional self-consistent Hamiltonian model for the evolution of the re. . .
Date: 03/2017 Publisher: Physics of Plasmas Pages: 056501 DOI: 10.1063/1.4977539 Available at: http://aip.scitation.org/doi/10.1063/1.4977539
More Details
Authors: Agapitov O., Blum L. W., Mozer F S, Bonnell J. W., and Wygant J
Title: Chorus whistler wave source scales as determined from multipoint Van Allen Probe measurements
Abstract: Whistler mode chorus waves are particularly important in outer radiation belt dynamics due to their key role in controlling the acceleration and scattering of electrons over a very wide energy range. The key parameters for both nonlinear and quasi-linear treatment of wave-particle interactions are the temporal and spatial scales of the wave source region and coherence of the wave field perturbations. Neither the source scale nor the coherence scale is well established experimentally, mostly because of a lack of multipoint VLF waveform measurements. We present an unprecedentedly long interval of coordinated VLF waveform measurements (sampled at 16384 s−1) aboard the two Van Allen Probes spacecraft—9 h (0800–1200 UT and 1700–2200 UT) during two consecutive apogees on 15 July . . .
Date: 03/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL072701 Available at: http://doi.wiley.com/10.1002/2017GL072701
More Details

Pages