Biblio

Found 3 results
Filters: Keyword is Inward radial diffusion  [Clear All Filters]
2019
Authors: Zhao H., Baker D.N., Li X, Malaspina D.M., Jaynes A.N., et al.
Title: On the Acceleration Mechanism of Ultrarelativistic Electrons in the Center of the Outer Radiation Belt: A Statistical Study
Abstract: Using energetic particle and wave measurements from the Van Allen Probes, Polar Orbiting Environmental Satellites (POES), and Geostationary Operational Environmental Satellite (GOES), the acceleration mechanism of ultrarelativistic electrons (>3 MeV) in the center of the outer radiation belt is investigated statistically. A superposed epoch analysis is conducted using 19 storms, which caused flux enhancements of 1.8–7.7 MeV electrons. The evolution of electron phase space density radial profile suggests an energy‐dependent acceleration of ultrarelativistic electrons in the outer belt. Especially, for electrons with very high energies (~7 MeV), prevalent positive phase space density radial gradients support inward radial diffusion being responsible for electron acceleration in the cente. . .
Date: 10/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA027111 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA027111
More Details
Authors: Hua Man, Li Wen, Ma Qianli, Ni Binbin, Nishimura Yukitoshi, et al.
Title: Modeling the Electron Flux Enhancement and Butterfly Pitch Angle Distributions on L Shells <2.5
Abstract: We analyze an energetic electron flux enhancement event in the inner radiation belt observed by Van Allen Probes during an intense geomagnetic storm. The energetic electron flux at L~1.5 increased by a factor of 3 with pronounced butterfly pitch angle distributions (PADs). Using a three‐dimensional radiation belt model, we simulate the electron evolution under the impact of radial diffusion, local wave‐particle interactions including hiss, very low frequency transmitters, and magnetosonic waves, as well as Coulomb scattering. Consistency between observation and simulation suggests that inward radial diffusion plays a dominant role in accelerating electrons up to 900 keV and transporting the butterfly PADs from higher L shells to form the butterfly PADs at L~1.5. However, local wave‐p. . .
Date: 09/2019 Publisher: Geophysical Research Letters Pages: 10967 - 10976 DOI: 10.1029/2019GL084822 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL084822
More Details
2018
Authors: Zhao H., Baker D N, Li X, Jaynes A. N., and Kanekal S G
Title: The Acceleration of Ultrarelativistic Electrons During a Small to Moderate Storm of 21 April 2017
Abstract: The ultrarelativistic electrons (E > ~3 MeV) in the outer radiation belt received limited attention in the past due to sparse measurements. Nowadays, the Van Allen Probes measurements of ultrarelativistic electrons with high energy resolution provide an unprecedented opportunity to study the dynamics of this population. In this study, using data from the Van Allen Probes, we report significant flux enhancements of ultrarelativistic electrons with energies up to 7.7 MeV during a small to moderate geomagnetic storm. The underlying physical mechanisms are investigated by analyzing and simulating the evolution of electron phase space density. The results suggest that during this storm, the acceleration mechanism for ultrarelativistic electrons in the outer belt is energy‐dependent: local acc. . .
Date: 06/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL078582 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL078582
More Details