Biblio

Found 9 results
Filters: Keyword is energetic particles  [Clear All Filters]
2019
Authors: Turner D. L., Kilpua E. K. J., Hietala H., Claudepierre S G, O'Brien T P, et al.
Title: The Response of Earth's Electron Radiation Belts to Geomagnetic Storms: Statistics From the Van Allen Probes Era Including Effects From Different Storm Drivers
Abstract: A statistical study was conducted of Earth's radiation belt electron response to geomagnetic storms using NASA's Van Allen Probes mission. Data for electrons with energies ranging from 30 keV to 6.3 MeV were included and examined as a function of L‐shell, energy, and epoch time during 110 storms with SYM‐H ≤−50 nT during September 2012 to September 2017 (inclusive). The radiation belt response revealed clear energy and L‐shell dependencies, with tens of keV electrons enhanced at all L‐shells (2.5 ≤ L ≤ 6) in all storms during the storm commencement and main phase and then quickly decaying away during the early recovery phase, low hundreds of keV electrons enhanced at lower L‐shells (~3 ≤ L ≤ ~4) in upward of 90% of all storms and then decaying gradually during the rec. . .
Date: 01/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026066 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026066
More Details
2018
Authors: Chaston C. C., Bonnell J. W., Halford A J, Reeves G D, Baker D N, et al.
Title: Pitch Angle Scattering and Loss of Radiation Belt Electrons in Broadband Electromagnetic Waves
Abstract: A magnetic conjunction between Van Allen Probes spacecraft and the Balloon Array for Radiation‐belt Relativistic Electron Losses (BARREL) reveals the simultaneous occurrence of broadband Alfvénic fluctuations and multi‐timescale modulation of enhanced atmospheric X‐ray bremsstrahlung emission. The properties of the Alfvénic fluctuations are used to build a model for pitch angle scattering in the outer radiation belt on electron gyro‐radii scale field structures. It is shown that this scattering may lead to the transport of electrons into the loss cone over an energy range from hundreds of keV to multi‐MeV on diffusive timescales on the order of hours. This process may account for modulation of atmospheric X‐ray fluxes observed from balloons and constitute a significant loss p. . .
Date: 09/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL079527 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL079527
More Details
Authors: Xiong Ying, Xie Lun, Chen Lunjin, Ni Binbin, Fu Suiyan, et al.
Title: The Response of the Energy Content of the Outer Electron Radiation Belt to Geomagnetic Storms
Abstract: Using the data from the Van Allen Probe‐A spacecraft, the variability of the total outer radiation belt (2.5300 keV) is investigated for the first time during 51 isolated storms spanning from October 2012 to May 2017. The statistical results show that the TRBEEC exhibits no‐change in 20% of the storms and gets enhanced during 80% of them. The sub‐relativistic electrons (300‐500 keV) and relativistic electrons (0.5‐2.0 MeV) equally contribute to the TRBEEC during the main phases, while in the recovery phases, the relativistic electrons contribute up to 80% of the TRBEEC. The results of the superposed epoch analysis of the solar wind parameters and geomagnetic indices indicate that the TRBEEC enhancement events prefe. . .
Date: 09/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025475 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025475
More Details
2017
Authors: Turner D. L., Fennell J. F., Blake J B, Claudepierre S G, Clemmons J. H., et al.
Title: Multipoint observations of energetic particle injections and substorm activity during a conjunction between Magnetospheric Multiscale (MMS) and Van Allen Probes
Abstract: This study examines multipoint observations during a conjunction between MMS and Van Allen Probes on 07 April 2016 in which a series of energetic particle injections occurred. With complementary data from THEMIS, Geotail, and LANL-GEO (16 spacecraft in total), we develop new insights on the nature of energetic particle injections associated with substorm activity. Despite this case involving only weak substorm activity (max. AE < 300 nT) during quiet geomagnetic conditions in steady, below-average solar wind, a complex series of at least six different electron injections was observed throughout the system. Intriguingly, only one corresponding ion injection was clearly observed. All ion and electron injections were observed at < 600 keV only. MMS reveals detailed substructure within the lar. . .
Date: 09/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024554 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024554/full
More Details
2016
Authors: Liu H., Zong Q.-G., Zhou X.-Z., Fu S. Y., Rankin R, et al.
Title: Compressional ULF wave modulation of energetic particles in the inner magnetosphere
Abstract: We present Van Allen Probes observations of modulations in the flux of very energetic electrons up to a few MeV and protons between 1200 − 1400 UT on February 19th, 2014. During this event the spacecraft were in the dayside magnetosphere at L⋆≈5.5. The modulations extended across a wide range of particle energies, from 79.80 keV to 2.85 MeV for electrons and from 82.85 keV to 636.18 keV for protons. The fluxes of π/2 pitch angle particles were observed to attain maximum values simultaneously with the ULF compressional magnetic field component reaching a minimum. We use peak-to-valley ratios to quantify the strength of the modulation effect, finding that the modulation is larger at higher energies than at lower energies. It is shown that the compressional wave modulation of the parti. . .
Date: 05/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022706 Available at: http://doi.wiley.com/10.1002/2016JA022706
More Details
Authors: Fennell J. F., Blake J B, Claudepierre S., Mazur J, Kanekal S., et al.
Title: Current energetic particle sensors
Abstract: Several energetic particle sensors designed to make measurements in the current decade are described and their technology and capabilities discussed and demonstrated. Most of these instruments are already on orbit or approaching launch. These include the Magnetic Electron Ion Spectrometers (MagEIS) and the Relativistic Electron Proton Telescope (REPT) that are flying on the Van Allen Probes, the Fly's Eye Electron Proton Spectrometers (FEEPS) flying on the Magnetospheric Multiscale (MMS) mission, and Dosimeters flying on the AC6 Cubesat mission. We focus mostly on the electron measurement capability of these sensors while providing summary comments of their ion measurement capabilities if they have any.
Date: 09/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022588 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA022588/abstract
More Details
Authors: Westlake J. H., Cohen I. J., Mauk B H, Anderson B J, Mitchell D G, et al.
Title: The permeability of the magnetopause to a multispecies substorm injection of energetic particles
Abstract: Leakage of ions from the magnetosphere into the magnetosheath remains an important topic in understanding the plasma physics of Earth's magnetopause and the interaction of the solar wind with the magnetosphere. Here using sophisticated instrumentation from two spacecraft (Radiation Belt Storm Probes Ion Composition Experiment on the Van Allen Probes and Energetic Ion Spectrometer on the Magnetospheric Multiscale) spaced uniquely near and outside the dayside magnetopause, we are able to determine the escape mechanisms for large gyroradii oxygen ions and much smaller gyroradii hydrogen and helium ions. The oxygen ions are entrained on the magnetosphere boundary, while the hydrogen and helium ions appear to escape along reconnected field lines. These results have important implications for no. . .
Date: 09/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL070189 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016GL070189/full
More Details
2015
Authors: Reeves Geoffrey D, Friedel Reiner H W, Larsen Brian A., Skoug Ruth M., Funsten Herbert O., et al.
Title: Energy dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions.
Abstract: We present observations of the radiation belts from the HOPE and MagEIS particle detectors on the Van Allen Probes satellites that illustrate the energy-dependence and L-shell dependence of radiation belt enhancements and decays. We survey events in 2013 and analyze an event on March 1 in more detail. The observations show: (a) At all L-shells, lower-energy electrons are enhanced more often than higher energies; (b) Events that fill the slot region are more common at lower energies; (c) Enhancements of electrons in the inner zone are more common at lower energies; and (d) Even when events do not fully fill the slot region, enhancements at lower-energies tend to extend to lower L-shells than higher energies. During enhancement events the outer zone extends to lower L-shells at lower energie. . .
Date: 12/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021569 Available at: http://doi.wiley.com/10.1002/2015JA021569http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021569
More Details
2014
Authors: Hao Y. X., Zong Q.-G., Wang Y. F., Zhou X.-Z., Zhang Hui, et al.
Title: Interactions of energetic electrons with ULF waves triggered by interplanetary shock: Van Allen Probes observations in the magnetotail
Abstract: We present in situ observations of a shock-induced substorm-like event on 13 April 2013 observed by the newly launched Van Allen twin probes. Substorm-like electron injections with energy of 30–500 keV were observed in the region from L∼5.2 to 5.5 immediately after the shock arrival (followed by energetic electron drift echoes). Meanwhile, the electron flux was clearly and strongly varying on the ULF wave time scale. It is found that both toroidal and poloidal mode ULF waves with a period of 150 s emerged following the magnetotail magnetic field reconfiguration after the interplanetary (IP) shock passage. The poloidal mode is more intense than the toroidal mode. The 90° phase shift between the poloidal mode Br and Ea suggests the standing poloidal waves in the Northern Hemisphere. F. . .
Date: 10/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020023 Available at: http://doi.wiley.com/10.1002/2014JA020023
More Details