Biblio

Found 11 results
Filters: Keyword is Whistler waves  [Clear All Filters]
2019
Authors: Tyler E., Breneman A., Cattell C., Wygant J, Thaller S., et al.
Title: Statistical occurrence and distribution of high amplitude whistler-mode waves in the outer radiation belt
Abstract: We present the first statistical analysis with continuous data coverage and non‐averaged amplitudes of the prevalence and distribution of high‐amplitude (> 5 mV/m) whistler‐mode waves in the outer radiation belt using 5 years of Van Allen Probes data. These waves are most common above L=3.5 and between MLT of 0‐7 where they are present 1‐4% of the time. During high geomagnetic activity, high‐amplitude whistler‐mode wave occurrence rises above 30% in some regions. During these active times the plasmasphere erodes to lower L and high‐amplitude waves are observed at all L outside of it, with the highest occurrence at low L (3.5‐4) in the pre‐dawn sector. These results have important implications for modeling radiation belt particle interactions with chorus, as large‐amp. . .
Date: 02/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL082292 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082292
More Details
2018
Authors: áhlava J., ěmec F., ík O., šová I., Hospodarskyy G. B., et al.
Title: Longitudinal dependence of whistler mode electromagnetic waves in the Earth's inner magnetosphere
Abstract: We use the measurements performed by the DEMETER (2004‐2010) and the Van Allen Probes (2012‐2016, still operating) spacecraft to investigate the longitudinal dependence of the intensity of whistler mode waves in the Earth's inner magnetosphere. We show that a significant longitudinal dependence is observed inside the plasmasphere on the nightside, primarily in the frequency range 400 Hz–2 kHz. On the other hand, almost no longitudinal dependence is observed on the dayside. The obtained results are compared to the lightning occurrence rate provided by the OTD/LIS mission normalized by a factor accounting for the ionospheric attenuation. The agreement between the two dependencies indicates that lightning generated electromagnetic waves may be responsible for the observed effect, thus s. . .
Date: 07/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025284 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025284
More Details
Authors: Agapitov O., Drake J. F., Vasko I., Mozer F S, Artemyev A., et al.
Title: Nonlinear Electrostatic Steepening of Whistler Waves: The Guiding Factors and Dynamics in Inhomogeneous Systems
Abstract: Whistler mode chorus waves are particularly important in outer radiation belt dynamics due to their key role in controlling the acceleration and scattering of electrons over a very wide energy range. The efficiency of wave‐particle resonant interactions is defined by whistler wave properties which have been described by the approximation of plane linear waves propagating through the cold plasma of the inner magnetosphere. However, recent observations of extremely high‐amplitude whistlers suggest the importance of nonlinear wave‐particle interactions for the dynamics of the outer radiation belt. Oblique chorus waves observed in the inner magnetosphere often exhibit drastically nonsinusoidal (with significant power in the higher harmonics) waveforms of the parallel electric field, pres. . .
Date: 03/2018 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL076957 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1002/2017GL076957
More Details
2017
Authors: Crabtree Chris, Ganguli Gurudas, and Tejero Erik
Title: Analysis of self-consistent nonlinear wave-particle interactions of whistler waves in laboratory and space plasmas
Abstract: Whistler mode chorus is one of the most important emissions affecting the energization of the radiation belts. Recent laboratory experiments that inject energetic electron beams into a cold plasma have revealed several spectral features in the nonlinear evolution of these instabilities that have also been observed in high-time resolution in situ wave-form data. These features include (1) a sub-element structure which consists of an amplitude modulation on time-scales slower than the bounce time, (2) closely spaced discrete frequency hopping that results in a faster apparent frequency chirp rate, (3) fast frequency changes near the sub-element boundaries, and (4) harmonic generation. In this paper, we develop a finite dimensional self-consistent Hamiltonian model for the evolution of the re. . .
Date: 03/2017 Publisher: Physics of Plasmas Pages: 056501 DOI: 10.1063/1.4977539 Available at: http://aip.scitation.org/doi/10.1063/1.4977539
More Details
Authors: Hwang J., Shin D. K., Yoon P. H., Kurth W S, Larsen B A, et al.
Title: Roles of hot electrons in generating upper-hybrid waves in the earth's radiation belt
Abstract: Electrostatic fluctuations near upper-hybrid frequency, which are sometimes accompanied by multiple-harmonic electron cyclotron frequency bands above and below the upper-hybrid frequency, are common occurrences in the Earth's radiation belt, as revealed through the twin Van Allen Probe spacecrafts. It is customary to use the upper-hybrid emissions for estimating the background electron density, which in turn can be used to determine the plasmapause locations, but the role of hot electrons in generating such fluctuations has not been discussed in detail. The present paper carries out detailed analyses of data from the Waves instrument, which is part of the Electric and Magnetic Field Instrument Suite and Integrated Science suite onboard the Van Allen Probes. Combined with the theoretical ca. . .
Date: 06/2017 Publisher: Physics of Plasmas Pages: 062904 DOI: 10.1063/1.4984249 Available at: http://aip.scitation.org/doi/10.1063/1.4984249
More Details
Authors: Artemyev A. V., Mourenas D., Agapitov O. V., and Blum L.
Title: Transverse eV ion heating by random electric field fluctuations in the plasmasphere
Abstract: Charged particle acceleration in the Earth inner magnetosphere is believed to be mainly due to the local resonant wave-particle interaction or particle transport processes. However, the Van Allen Probes have recently provided interesting evidence of a relatively slow transverse heating of eV ions at distances about 2–3 Earth radii during quiet times. Waves that are able to resonantly interact with such very cold ions are generally rare in this region of space, called the plasmasphere. Thus, non-resonant wave-particle interactions are expected to play an important role in the observed ion heating. We demonstrate that stochastic heating by random transverse electric field fluctuations of whistler (and possibly electromagnetic ion cyclotron) waves could explain this weak and slow transverse. . .
Date: 02/2017 Publisher: Physics of Plasmas DOI: 10.1063/1.4976713 Available at: http://aip.scitation.org/doi/abs/10.1063/1.4976713
More Details
2016
Authors: Artemyev Anton, Agapitov Oleksiy, Mourenas Didier, Krasnoselskikh Vladimir, Shastun Vital, et al.
Title: Oblique Whistler-Mode Waves in the Earth’s Inner Magnetosphere: Energy Distribution, Origins, and Role in Radiation Belt Dynamics
Abstract: In this paper we review recent spacecraft observations of oblique whistler-mode waves in the Earth’s inner magnetosphere as well as the various consequences of the presence of such waves for electron scattering and acceleration. In particular, we survey the statistics of occurrences and intensity of oblique chorus waves in the region of the outer radiation belt, comprised between the plasmapause and geostationary orbit, and discuss how their actual distribution may be explained by a combination of linear and non-linear generation, propagation, and damping processes. We further examine how such oblique wave populations can be included into both quasi-linear diffusion models and fully nonlinear models of wave-particle interaction. On this basis, we demonstrate that varying amounts of obliq. . .
Date: 04/2016 Publisher: Space Science Reviews Pages: 261 - 355 DOI: 10.1007/s11214-016-0252-5 Available at: https://link.springer.com/article/10.1007/s11214-016-0252-5
More Details
2015
Authors: Tejero E. M., Crabtree C., Blackwell D. D., Amatucci W. E., Mithaiwala M., et al.
Title: Laboratory studies of nonlinear whistler wave processes in the Van Allen radiation belts
Abstract: Important nonlinear wave-wave and wave-particle interactions that occur in the Earth’s Van Allen radiation belts are investigated in a laboratory experiment. Predominantly electrostatic waves in the whistler branch are launched that propagate near the resonance cone with measured wave normal angle greater than 85º. When the pump amplitude exceeds a threshold ~5 x10^6 times the back- ground magnetic field, wave power at frequencies below the pump frequency is observed at wave normal angles (~55º). The scattered wave has a perpendicular wavelength that is nearly an order of magnitude larger than that of the pump wave. Occasionally, the parametric decay of a lower hybrid wave into a magnetosonic wave and a whistler wave is simultaneously observed with a threshold of δB=B_0 ~7 x 10^-7. . .
Date: 08/2015 Publisher: Physics of Plasmas DOI: 10.1063/1.4928944 Available at: http://scitation.aip.org/content/aip/journal/pop/22/9/10.1063/1.4928944
More Details
Authors: Wu S., Denton R. E., Liu K., and Hudson M K
Title: One- and two-dimensional hybrid simulations of whistler mode waves in a dipole field
Abstract: We simulate whistler mode waves using a hybrid code. There are four species in the simulations, hot electrons initialized with a bi-Maxwellian distribution with temperature in the direction perpendicular to background magnetic field greater than that in the parallel direction, warm isotropic electrons, cold inertialess fluid electrons, and protons as an immobile background. The density of the hot population is a small fraction of the total plasma density. Comparison between the dispersion relation of our model and other dispersion relations shows that our model is more accurate for lower frequency whistlers than for higher frequency whistlers. Simulations in 2-D Cartesian coordinates agree very well with those using a full dynamics code. In the 1-D simulations along the dipole magnetic fie. . .
Date: 03/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: 1908 - 1923 DOI: 10.1002/2014JA020736 Available at: http://doi.wiley.com/10.1002/2014JA020736
More Details
Authors: Artemyev A. V., Mourenas D., Agapitov O. V., Vainchtein D. L., Mozer F S, et al.
Title: Stability of relativistic electron trapping by strong whistler or electromagnetic ion cyclotron waves
Abstract: In the present paper, we investigate the trapping of relativistic electrons by intense whistler-mode waves or electromagnetic ion cyclotron waves in the Earth's radiation belts. We consider the non-resonant impact of additional, lower amplitude magnetic field fluctuations on the stability of electron trapping. We show that such additional non-resonant fluctuations can break the adiabatic invariant corresponding to trapped electron oscillations in the effective wave potential. This destruction results in a diffusive escape of electrons from the trapped regime of motion and thus can lead to a significant reduction of the efficiency of electron acceleration. We demonstrate that when energetic electrons are trapped by intense parallel or very oblique whistler-mode waves, non-resonant magnetic . . .
Date: 08/2015 Publisher: Physics of Plasmas Pages: 082901 DOI: 10.1063/1.4927774 Available at: http://scitation.aip.org/content/aip/journal/pop/22/8/10.1063/1.4927774
More Details
2014
Authors: Khazanov G., Sibeck D., Tel'nikhin A., and Kronberg T.
Title: Relativistic electron precipitation events driven by electromagnetic ion-cyclotron waves
Abstract: We adopt a canonical approach to describe the stochastic motion of relativistic belt electrons and their scattering into the loss cone by nonlinear EMIC waves. The estimated rate of scattering is sufficient to account for the rate and intensity of bursty electron precipitation. This interaction is shown to result in particle scattering into the loss cone, forming ∼10 s microbursts of precipitating electrons. These dynamics can account for the statistical correlations between processes of energization, pitch angle scattering, and relativistic electron precipitation events, that are manifested on large temporal scales of the order of the diffusion time ∼tens of minutes.
Date: 08/2014 Publisher: Physics of Plasmas Pages: 082901 DOI: 10.1063/1.4892185 Available at: http://scitation.aip.org/content/aip/journal/pop/21/8/10.1063/1.4892185
More Details