Found 2 results
Filters: Keyword is linear growth rate  [Clear All Filters]
Authors: Yu Xiongdong, Yuan Zhigang, Huang Shiyong, Yao Fei, Qiao Zheng, et al.
Title: Excitation of extremely low-frequency chorus emissions: The role of background plasma density
Abstract: Low‐frequency chorus emissions have recently attracted much attention due to the suggestion that they may play important roles in the dynamics of the Van Allen Belts. However, the mechanism (s) generating these low‐frequency chorus emissions have not been well understood. . In this letter, we report an interesting case in which background plasma density lowered the lower cutoff frequency of chorus emissions from above 0.1 f ce (typical ordinary chorus) to 0.02 f ce (extremely low‐frequency chorus). Those extremely low‐frequency chorus waves were observed in a rather dense plasma, where the number density N e was found to be several times larger than has been associated with observations of ordinary chorus waves. For suprathermal electrons whose free energy is supplied by anisotropi. . .
Date: 02/2019 Publisher: Earth and Planetary Physics Pages: 1 - 7 DOI: 10.26464/epp2019001 Available at:
More Details
Authors: Zhu Hui, Chen Lunjin, Liu Xu, and Shprits Yuri Y
Title: Modulation of Locally Generated Equatorial Noise by ULF Wave
Abstract: In this paper we report a rare and fortunate event of fast magnetosonic (MS, also called equatorial noise) waves modulated by compressional ultralow frequency (ULF) waves measured by Van Allen Probes. The characteristics of MS waves, ULF waves, proton distribution, and their potential correlations are analyzed. The results show that ULF waves can modulate the energetic ring proton distribution and in turn modulate the MS generation. Furthermore, the variation of MS intensities is attributed to not only ULF wave activities but also the variation of background parameters, for example, number density. The results confirm the opinion that MS waves are generated by proton ring distribution and propose a new modulation phenomenon.
Date: 04/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026199 Available at:
More Details