Biblio

Found 11 results
Filters: Keyword is Ionosphere  [Clear All Filters]
2014
Authors: Thomas Evan G., Yan Jingye, Zhang Jiaojiao, Baker Joseph B. H., Ruohoniemi Michael, et al.
Title: An examination of the source of decameter-scale irregularities in the geomagnetically disturbed mid-latitude ionosphere
Abstract: We present first results from a study of the plasma instability mechanism responsible for the small-scale (∼10 m) ionospheric density irregularities commonly observed by the Super Dual Auroral Radar Network (SuperDARN) HF radars in the vicinity of Sub Auroral Polarization Streams (SAPS) during periods of geomagnetic disturbance. A focus is placed on the mid-latitude region of the ionosphere over North America where recent expansion of the SuperDARN network allows for extensive direct comparisons with total electron content (TEC) measurements from a dense network of ground-based GPS receivers. The TEC observations indicate that high-speed SAPS channels and the associated small-scale irregularities are typically located within the mid-latitude ionospheric trough. The Millstone Hill Incoher. . .
Date: 08/2014 Publisher: IEEE DOI: 10.1109/URSIGASS.2014.6929853 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6929853
More Details
Authors: Foster John C, and Erickson Philip J.
Title: Initial observations of plasma waves in the sub-auroral polarization stream with the Van Allen Probes
Abstract: The Sub-Auroral Polarization Stream (SAPS) is a geospace boundary layer phenomenon associated with the interaction of the warm plasma of the magnetospheric ring current with the cold ions and electrons of the outer plasmasphere [1]. Driven by ring current enhancements during magnetospheric disturbances, SAPS location, intensity, and characteristics are greatly influenced by the underlying ionosphere. Strong M-I coupling by means of field-aligned currents creates a high-speed (>1000 m/s) westward plasma flow channel in the ionosphere at pre-midnight/post-noon local times which is readily observable by incoherent scatter [2] and HF radars and in plasma drift observations by low-altitude spacecraft (e.g. DMSP). The fast ionospheric flows generate E-region irregularities providing for addition. . .
Date: 08/2014 Publisher: IEEE DOI: 10.1109/URSIGASS.2014.6929852 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6929852
More Details
Authors: Bergeot Nicolas, Chevalier Jean-Marie, Bruyninx Carine, Pottiaux Eric, Aerts Wim, et al.
Title: Near real-time ionospheric monitoring over Europe at the Royal Observatory of Belgium using GNSS data
Abstract: Various scientific applications and services increasingly demand real-time information on the effects of space weather on Earth’s atmosphere. In this frame, the Royal Observatory of Belgium (ROB) takes advantage of the dense EUREF Permanent GNSS Network (EPN) to monitor the ionosphere over Europe from the measured delays in the GNSS signals, and provides publicly several derived products. The main ROB products consist of ionospheric vertical Total Electron Content (TEC) maps over Europe and their variability estimated in near real-time every 15 min on 0.5° × 0.5° grids using GPS observations. The maps are available online with a latency of ~3 min in IONEX format at ftp://gnss.oma.be and as interactive web pages at www.gnss.be. This paper presents the method used in the ROB-IONO softwa. . .
Date: 09/2014 Publisher: Journal of Space Weather and Space Climate Pages: A31 DOI: 10.1051/swsc/2014028 Available at: http://www.swsc-journal.org/10.1051/swsc/2014028
More Details
Authors: Palo Scott E., Gerhardt David, Li Xinlin, Blum Lauren, Schiller Quintin, et al.
Title: One year of on-orbit performance of the Colorado Student Space Weather Experiment (CSSWE)
Abstract: The Colorado Student Space Weather Experiment is a 3-unit (10cm × 10cm × 30cm) CubeSat funded by the National Science Foundation and constructed at the University of Colorado (CU). The CSSWE science instrument, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile), provides directional differential flux measurements of 0.5 to >3.3 MeV electrons and 9 to 40 MeV protons. Though a collaboration of 60+ multidisciplinary graduate and undergraduate students working with CU professors and engineers at the Laboratory for Atmospheric and Space Physics (LASP), CSSWE was designed, built, tested, and delivered in 3 years. On September 13, 2012, CSSWE was inserted to a 477 × 780 km, 65° orbit as a secondary payload on an Atlas V through the NASA Educational Launch of. . .
Date: 01/2014 Publisher: IEEE DOI: 10.1109/USNC-URSI-NRSM.2014.6928087 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6928087
More Details
2015
Authors: Ganguli G., Crabtree C., Mithaiwala M., Rudakov L., and Scales W.
Title: Evolution of lower hybrid turbulence in the ionosphere
Abstract: Three-dimensional evolution of the lower hybrid turbulence driven by a spatially localized ion ring beam perpendicular to the ambient magnetic field in space plasmas is analyzed. It is shown that the quasi-linear saturation model breaks down when the nonlinear rate of scattering by thermal electron is larger than linear damping rates, which can occur even for low wave amplitudes. The evolution is found to be essentially a three-dimensional phenomenon, which cannot be accurately explained by two-dimensional simulations. An important feature missed in previous studies of this phenom- enon is the nonlinear conversion of electrostatic lower hybrid waves into electromagnetic whistler and magnetosonic waves and the consequent energy loss due to radiation from the source region. This can result i. . .
Date: 11/2015 Publisher: Physics of Plasmas Pages: 112904 DOI: 10.1063/1.4936281 Available at: http://scitation.aip.org/content/aip/journal/pop/22/11/10.1063/1.4936281
More Details
Authors: Sarno-Smith Lois K., Liemohn Michael W., Katus Roxanne M., Skoug Ruth M., Larsen Brian A., et al.
Title: Postmidnight depletion of the high-energy tail of the quiet plasmasphere
Abstract: The Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument measures the high-energy tail of the thermal plasmasphere allowing study of topside ionosphere and inner magnetosphere coupling. We statistically analyze a 22 month period of HOPE data, looking at quiet times with a Kp index of less than 3. We investigate the high-energy range of the plasmasphere, which consists of ions at energies between 1 and 10 eV and contains approximately 5% of total plasmaspheric density. Both the fluxes and partial plasma densities over this energy range show H+ is depleted the most in the postmidnight sector (1–4 magnetic local time), followed by O+ and then He+. The relative depletion of each species across the postmidnight sector is not ordered by mass, which reveals ionospheric influence. We. . .
Date: 03/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020682 Available at: http://doi.wiley.com/10.1002/2014JA020682
More Details
2016
Authors: Kistler L.M., Mouikis C. G., Spence H.E., Menz A.M., Skoug R.M., et al.
Title: The Source of O + in the Storm-time Ring Current
Abstract: A stretched and compressed geomagnetic field occurred during the main phase of a geomagnetic storm on 1 June 2013. During the storm the Van Allen Probes spacecraft made measurements of the plasma sheet boundary layer, and observed large fluxes of O+ ions streaming up the field line from the nightside auroral region. Prior to the storm main phase there was an increase in the hot (>1 keV) and more isotropic O+ions in the plasma sheet. In the spacecraft inbound pass through the ring current region during the storm main phase, the H+ and O+ ions were significantly enhanced. We show that this enhanced inner magnetosphere ring current population is due to the inward adiabatic convection of the plasma sheet ion population. The energy range of the O+ ion plasma sheet that impacts the ring curren. . .
Date: 05/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA022204 Available at: http://doi.wiley.com/10.1002/2015JA022204
More Details
Authors: Chaston C. C., Bonnell J. W., Reeves G D, and Skoug R M
Title: Driving ionospheric outflows and magnetospheric O + energy density with Alfvén waves
Abstract: We show how dispersive Alfvén waves observed in the inner magnetosphere during geomagnetic storms can extract O+ ions from the topside ionosphere and accelerate these ions to energies exceeding 50 keV in the equatorial plane. This occurs through wave trapping, a variant of “shock” surfing, and stochastic ion acceleration. These processes in combination with the mirror force drive field-aligned beams of outflowing ionospheric ions into the equatorial plane that evolve to provide energetic O+ distributions trapped near the equator. These waves also accelerate preexisting/injected ion populations on the same field lines. We show that the action of dispersive Alfvén waves over several minutes may drive order of magnitude increases in O+ ion pressure to make substantial contributions to. . .
Date: 05/2016 Publisher: Geophysical Research Letters Pages: 4825 - 4833 DOI: 10.1002/2016GL069008 Available at: http://doi.wiley.com/10.1002/2016GL069008
More Details
Authors: Lejosne Solène, and Mozer F S
Title: Van Allen Probe measurements of the electric drift E × B/B2 at Arecibo's L = 1.4 field line coordinate
Abstract: We have used electric and magnetic measurements by Van Allen Probe B from 2013 to 2014 to examine the equatorial electric drift E × B/B2 at one field line coordinate set to Arecibo's incoherent scatter radar location (L = 1.43). We report on departures from the traditional picture of corotational motion with the Earth in two ways: (1) the rotational angular speed is found to be 10% smaller than the rotational angular speed of the Earth, in agreement with previous works on plasmaspheric notches, and (2) the equatorial electric drift displays a dependence in magnetic local time, with a pattern consistent with the mapping of the Arecibo ionosphere dynamo electric fields along equipotential magnetic field lines. The electric fields due to the ionosphere dynamo are therefore expected t. . .
Date: 07/2016 Publisher: Geophysical Research Letters Pages: 6768 - 6774 DOI: 10.1002/2016GL069875 Available at: http://doi.wiley.com/10.1002/2016GL069875
More Details
2017
Authors: Oyama S., Kero A., Rodger C. J., Clilverd M A, Miyoshi Y, et al.
Title: Energetic electron precipitation and auroral morphology at the substorm recovery phase
Abstract: It is well known that auroral patterns at the substorm recovery phase are characterized by diffuse or patch structures with intensity pulsation. According to satellite measurements and simulation studies, the precipitating electrons associated with these aurorae can reach or exceed energies of a few hundreds of keV through resonant wave-particle interactions in the magnetosphere. However, because of difficulty of simultaneous measurements, the dependency of energetic electron precipitation (EEP) on auroral morphological changes in the mesoscale has not been investigated to date. In order to study this dependency, we have analyzed data from the European Incoherent Scatter (EISCAT) radar, the Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA) riometer, collocated cameras, ground-based m. . .
Date: 05/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023484 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023484/full
More Details
Authors: Lejosne ène, Maus Stefan, and Mozer F S
Title: Model-observation comparison for the geographic variability of the plasma electric drift in the Earth's innermost magnetosphere
Abstract: Plasmaspheric rotation is known to lag behind Earth rotation. The causes for this corotation lag are not yet fully understood. We have used more than two years of Van Allen Probe observations to compare the electric drift measured below L~2 with the predictions of a general model. In the first step, a rigid corotation of the ionosphere with the solid Earth was assumed in the model. The results of the model-observation comparison are twofold: (1) radially, the model explains the average observed geographic variability of the electric drift; (2) azimuthally, the model fails to explain the full amplitude of the observed corotation lag. In the second step, ionospheric corotation was modulated in the model by thermospheric winds, as given by the latest version of the Horizontal Wind Model (HWM1. . .
Date: 07/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL074862 Available at: onlinelibrary.wiley.com/doi/10.1002/2017GL074862/full
More Details