Biblio

Found 14 results
Filters: Keyword is Plasmapause  [Clear All Filters]
2019
Authors: Zhao H., Johnston W.R., Baker D.N., Li X, Ni B, et al.
Title: Characterization and Evolution of Radiation Belt Electron Energy Spectra Based on the Van Allen Probes Measurements
Abstract: Based on the measurements of ~100‐keV to 10‐MeV electrons from the Magnetic Electron Ion Spectrometer (MagEIS) and Relativistic Electron and Proton Telescope (REPT) on the Van Allen Probes, the radiation belt electron energy spectra characterization and evolution have been investigated systematically. The results show that the majority of radiation belt electron energy spectra can be represented by one of three types of distributions: exponential, power law, and bump‐on‐tail (BOT). The exponential spectra are generally dominant in the outer radiation belt outside the plasmasphere, power law spectra usually appear at high L‐shells during injections of lower‐energy electrons, and BOT spectra commonly dominate inside the plasmasphere at L>2.5 during relatively quiet times. The. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026697 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026697
More Details
Authors: Goldstein J, De Pascuale S., and Kurth W S
Title: Epoch‐Based Model for Stormtime Plasmapause Location
Abstract: The output of a plasmapause test particle (PTP) code is used to formulate a new epoch‐based plasmapause model. The PTP simulation is run for an ensemble of 60 storms spanning 3 September 2012 to 28 September 2017 and having peak Dst of −60 nT or less, yielding over 7 million model plasmapause locations. Events are automatically identified and epoch times calculated relative to the respective storm peaks. Epoch analysis of the simulated plasmapause is demonstrated to be an effective method to reveal the dynamical phases of plume formation and evolution. The plasmapause radius is found to be strongly correlated with positive solar wind electric field. The epoch‐binned PTP data are used to create the first analytical model of the plasmapause that explicitly includes plumes. We obtain th. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025996 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025996
More Details
Authors: Thaller S. A., Wygant J R, Cattell C. A., Breneman A. W., Tyler E., et al.
Title: Solar rotation period driven modulations of plasmaspheric density and convective electric field in the inner magnetosphere
Abstract: This paper presents the first analysis of Van Allen Probes measurements of the cold plasma density and electric field in the inner magnetosphere to show that intervals of strong modulation at the solar rotation period occur in the locations of the outer plasmasphere and plasmapause (~0.7 RE peak‐to‐peak), in the large‐scale electric field (~0.24 mV/m peak‐to‐peak), and in the cold plasma density (~250 cm‐3 – ~70 cm‐3 peak‐to‐peak). Solar rotation modulation of the inner magnetosphere is more apparent in the declining phase of the solar cycle than near solar maximum. The periodicities in these parameters are compared to solar EUV irradiance, solar wind dawn‐dusk electric field, and Kp. The variations in the plasmapause location at the solar rotation period anti‐corre. . .
Date: 02/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026365 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026365
More Details
2018
Authors: Yue Chao, Bortnik Jacob, Li Wen, Ma Qianli, Gkioulidou Matina, et al.
Title: The composition of plasma inside geostationary orbit based on Van Allen Probes observations
Abstract: The composition of the inner magnetosphere is of great importance for determining the plasma pressure, and thus the currents and magnetic field configuration. In this study, we perform a statistical survey of equatorial plasma pressure distributions and investigate the relative contributions of ions and electron with different energies inside of geostationary orbit under two AE levels based on over sixty months of observations from the HOPE and RBSPICE mass spectrometers on board Van Allen Probes. We find that the total and partial pressures of different species increase significantly at high AE levels with Hydrogen (H+) pressure being dominant in the plasmasphere. The pressures of the heavy ions and electrons increase outside the plasmapause and develop a strong dawn‐dusk asymmetry with. . .
Date: 07/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025344 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025344
More Details
Authors: Mager Pavel N., Mikhailova Olga S., Mager Olga V., and Klimushkin Dmitri Yu.
Title: Eigenmodes of the transverse Alfvénic resonator at the plasmapause: a Van Allen Probes case study
Abstract: A Pc4 ULF wave was detected at spacecraft B of the Van Allen Probes at the plasmapause. A distinctive feature of this wave is the strong periodical modulation of the wave. It is assumed that this modulation is a beating of oscillations close in frequency: at least two harmonics with frequencies of 15.3 and 13.6 MHz are found. It is shown that these harmonics can be the eigenmodes of the transverse resonator at the local maximum of the Alfvén velocity. In addition, the observed wave was in a drift resonance with energetic 80 keV protons and could be generated by an unstable “bump on tail” distribution of protons simultaneously observed with the wave. The estimate of the azimuthal wave number m made from the drift resonance condition gives a value of about −100, i.e., it is a westward. . .
Date: 09/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL079596 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL079596
More Details
Authors: Liu Xu, Chen Lunjin, Yang Lixia, Xia Zhiyang, and Malaspina David M.
Title: One-Dimensional Full Wave Simulation of Equatorial Magnetosonic Wave Propagation in an Inhomogeneous Magnetosphere
Abstract: The effect of the plasmapause on equatorially radially propagating fast magnetosonic (MS) waves in the Earth's dipole magnetic field is studied by using finite difference time domain method. We run 1-D simulation for three different density profiles: (1) no plasmapause, (2) with a plasmapause, and (3) with a plasmapause accompanied with fine-scale density irregularity. We find that (1) without plasmapause the radially inward propagating MS wave can reach ionosphere and continuously propagate to lower altitude if no damping mechanism is considered. The wave properties follow the cold plasma dispersion relation locally along its trajectory. (2) For simulation with a plasmapause with a scale length of 0.006 RE compared to wavelength, only a small fraction of the MS wave power is reflected by . . .
Date: 01/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024336 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024336/full
More Details
2017
Authors: Tetrick S. S., Engebretson M. J., Posch J. L., Olson C. N., Smith C W, et al.
Title: Location of intense electromagnetic ion cyclotron (EMIC) wave events relative to the plasmapause: Van Allen Probes observations
Abstract: We have studied the spatial location relative to the plasmapause (PP) of the most intense electromagnetic ion cyclotron (EMIC) waves observed on Van Allen Probes A and B during their first full precession in local time. Most of these waves occurred over an L range of from -1 to +2 RE relative to the PP. Very few events occurred only within 0.1 RE of the PP, and events with a width in L of < 0.2 REoccurred both inside and outside the PP. Wave occurrence was always associated with high densities of ring current ions; plasma density gradients or enhancements were associated with some events but were not dominant factors in determining the sites of wave generation. Storm main and recovery phase events in the dusk sector were often inside the PP, and dayside events during quiet times and co. . .
Date: 03/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023392 Available at: http://doi.wiley.com/10.1002/2016JA023392
More Details
2016
Authors: He Fei, Zhang Xiao-Xin, Chen Bo, and Fok Mei-Ching
Title: Determination of the Earth's plasmapause location from the CE-3 EUVC images
Abstract: The Moon-based Extreme Ultraviolet Camera (EUVC) aboard China's Chang'e-3 (CE-3) mission has successfully imaged the entire Earth's plasmasphere for the first time from the side views on lunar surface. An EUVC image on 21 April 2014 is used in this study to demonstrate the characteristics and configurations of the Moon-based EUV imaging and to illustrate the determination algorithm of the plasmapause locations on the magnetic equator. The plasmapause locations determined from all the available EUVC images with the Minimum L Algorithm are quantitatively compared with those extracted from in situ observations (Defense Meteorological Satellite Program, Time History of Events and Macroscale Interactions during Substorms, and Radiation Belt Storm Probes). Excellent agreement between the determi. . .
Date: 01/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021863 Available at: http://doi.wiley.com/10.1002/2015JA021863
More Details
Authors: Foster J. C., Erickson P. J., Baker D N, Jaynes A. N., Mishin E. V., et al.
Title: Observations of the impenetrable barrier, the plasmapause, and the VLF bubble during the 17 March 2015 storm
Abstract: Van Allen Probes observations during the 17 March 2015 major geomagnetic storm strongly suggest that VLF transmitter-induced waves play an important role in sculpting the earthward extent of outer zone MeV electrons. A magnetically confined bubble of very low frequency (VLF) wave emissions of terrestrial, human-produced origin surrounds the Earth. The outer limit of the VLF bubble closely matches the position of an apparent barrier to the inward extent of multi-MeV radiation belt electrons near 2.8 Earth radii. When the VLF transmitter signals extend beyond the eroded plasmapause, electron loss processes set up near the outer extent of the VLF bubble create an earthward limit to the region of local acceleration near L = 2.8 as MeV electrons are scattered into the atmospheric loss cone.
Date: 06/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: 5537 - 5548 DOI: 10.1002/jgra.v121.610.1002/2016JA022509 Available at: http://doi.wiley.com/10.1002/2016JA022509
More Details
Authors: Goldstein J, Baker D N, Blake J B, De Pascuale S., Funsten H O, et al.
Title: The relationship between the plasmapause and outer belt electrons
Abstract: We quantify the spatial relationship between the plasmapause and outer belt electrons for a 5 day period, 15–20 January 2013, by comparing locations of relativistic electron flux peaks to the plasmapause. A peak-finding algorithm is applied to 1.8–7.7 MeV relativistic electron flux data. A plasmapause gradient finder is applied to wave-derived electron number densities >10 cm−3. We identify two outer belts. Outer belt 1 is a stable zone of >3 MeV electrons located 1–2 RE inside the plasmapause. Outer belt 2 is a dynamic zone of <3 MeV electrons within 0.5 RE of the moving plasmapause. Electron fluxes earthward of each belt's peak are anticorrelated with cold plasma density. Belt 1 decayed on hiss timescales prior to a disturbance on 17 January and suffered only a modest dropout, pe. . .
Date: 08/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023046 Available at: http://doi.wiley.com/10.1002/2016JA023046
More Details
2015
Authors: Cho Junghee, Lee Dae-Young, Kim Jin-Hee, Shin Dae-Kyu, Kim Kyung-Chan, et al.
Title: New model fit functions of the plasmapause location determined using THEMIS observations during the ascending phase of Solar Cycle 24
Abstract: It is well known that the plasmapause is influenced by the solar wind and magnetospheric conditions. Empirical models of its location have been previously developed such as those by O'Brien and Moldwin (2003) and Larsen et al. (2006). In this study, we identified the locations of the plasmapause using the plasma density data obtained from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellites. We used the data for the period (2008–2012) corresponding to the ascending phase of Solar Cycle 24. Our database includes data from over a year of unusually weak solar wind conditions, correspondingly covering the plasmapause locations in a wider L range than those in previous studies. It also contains many coronal hole stream intervals during which the plasmasp. . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021030 Available at: http://doi.wiley.com/10.1002/2015JA021030
More Details
2014
Authors: Whittaker Ian C., Clilverd Mark A., and Rodger Craig J.
Title: Characteristics of precipitating energetic electron fluxes relative to the plasmapause during geomagnetic storms
Abstract: n this study we investigate the link between precipitating electrons from the Van Allen radiation belts and the dynamical plasmapause. We consider electron precipitation observations from the Polar Orbiting Environmental Satellite (POES) constellation during geomagnetic storms. Superposed epoch analysis is performed on precipitating electron observations for the 13 year period of 1999 to 2012 in two magnetic local time (MLT) sectors, morning and afternoon. We assume that the precipitation is due to wave-particle interactions and our two MLT sectors focus on chorus (outside the plasmapause) and plasmaspheric hiss (inside the plasmapause) waves. We generate simple expressions based on the geomagnetic index, Dst, which reproduce the chorus-driven observations for the >30 keV precipitating ele. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020446 Available at: http://doi.wiley.com/10.1002/2014JA020446
More Details
Authors: Fu H. S., Cao J. B., Zhima Z., Khotyaintsev Y. V., Angelopoulos V, et al.
Title: First observation of rising-tone magnetosonic waves
Abstract: Magnetosonic (MS) waves are linearly polarized emissions confined near the magnetic equator with wave normal angle near 90° and frequency below the lower hybrid frequency. Such waves, also termed equatorial noise, were traditionally known to be “temporally continuous” in their time-frequency spectrogram. Here we show for the first time that MS waves actually have discrete wave elements with rising-tone features in their spectrogram. The frequency sweep rate of MS waves, ~1 Hz/s, is between that of chorus and electromagnetic ion cyclotron (EMIC) waves. For the two events we analyzed, MS waves occur outside the plasmapause and cannot penetrate into the plasmasphere; their power is smaller than that of chorus. We suggest that the rising-tone feature of MS waves is a consequence of nonl. . .
Date: 11/2014 Publisher: Geophysical Research Letters Pages: 7419 - 7426 DOI: 10.1002/grl.v41.2110.1002/2014GL061867 Available at: http://doi.wiley.com/10.1002/grl.v41.21http://doi.wiley.com/10.1002/2014GL061867
More Details
Authors: Yang Xiao C., Zhu Guang W., Zhang Xiao X., Sun Yue Q., Liang Jin B., et al.
Title: An unusual long-lived relativistic electron enhancement event excited by sequential CMEs
Abstract: An unusual long-lived intense relativistic electron enhancement event from July to August 2004 is examined using data from Fengyun-1, POES, GOES, ACE, the Cluster Mission and geomagnetic indices. During the initial 6 days of this event, the observed fluxes in the outer zone enhanced continuously and their maximum increased from 2.1 × 102 cm-2·sr-1·s-1 to 3.5 × 104 cm-2·sr-1·s-1, the region of enhanced fluxes extended from L = 3.5-6.5 to L = 2.5-6.5, and the flux peak location shifted inward from L ~ 4.2 to L ~ 3.3. During the following 7 days, without any locational movement, the flux peak increased slowly and exceeded the pre-storm fluxes by about 4 orders of magnitude. Subsequently, the decay rate of relativistic electrons is so slow that the peak re. . .
Date: 10/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA019797 Available at: http://doi.wiley.com/10.1002/2014JA019797
More Details