Biblio

Found 8 results
Filters: Keyword is wave particle interactions  [Clear All Filters]
2019
Authors: Capannolo L., Li W, Ma Q, Chen L, Shen X.‐C., et al.
Title: Direct Observation of Subrelativistic Electron Precipitation Potentially Driven by EMIC Waves
Abstract: Electromagnetic ion cyclotron (EMIC) waves are known to typically cause electron losses into Earth's upper atmosphere at >~1 MeV, while the minimum energy of electrons subject to efficient EMIC‐driven precipitation loss is unresolved. This letter reports electron precipitation from subrelativistic energies of ~250 keV up to ~1 MeV observed by the Focused Investigations of Relativistic Electron Burst Intensity, Range and Dynamics (FIREBIRD‐II) CubeSats, while two Polar Operational Environmental Satellites (POES) observed proton precipitation nearby. Van Allen Probe A detected EMIC waves (~0.7–2.0 nT) over the similar L shell extent of electron precipitation observed by FIREBIRD‐II, albeit with a ~1.6 magnetic local time (MLT) difference. Although plasmaspheric hiss and magnetosonic . . .
Date: 11/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL084202 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL084202
More Details
2018
Authors: Ripoll ‐F., Loridan V., Denton M. H., Cunningham G., Reeves G., et al.
Title: Observations and Fokker‐Planck simulations of the L‐shell, energy, and pitch‐angle structure of Earth’s electron radiation belts during quiet times
Abstract: The evolution of the radiation belts in L‐shell (L), energy (E), and equatorial pitch‐angle (α0) is analyzed during the calm 11‐day interval (March 4 –March 15) following the March 1 storm 2013. Magnetic Electron and Ion Spectrometer (MagEIS) observations from Van Allen Probes are interpreted alongside 1D and 3D Fokker‐Planck simulations combined with consistent event‐driven scattering modeling from whistler mode hiss waves. Three (L, E, α0)‐regions persist through 11 days of hiss wave scattering; the pitch‐angle dependent inner belt core (L~<2.2 and E<700 keV), pitch‐angle homogeneous outer belt low‐energy core (L>~5 and E~<100 keV), and a distinct pocket of electrons (L~[4.5, 5.5] and E~[0.7, 2] MeV). The pitch‐angle homogeneous outer belt is explained by the diff. . .
Date: 12/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026111 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026111
More Details
Authors: Capannolo L., Li W, Ma Q, Zhang X.-J., Redmon R. J., et al.
Title: Understanding the Driver of Energetic Electron Precipitation Using Coordinated Multisatellite Measurements
Abstract: Magnetospheric plasma waves play a significant role in ring current and radiation belt dynamics, leading to pitch angle scattering loss and/or stochastic acceleration of the particles. During a non‐storm time dropout event on 24 September 2013, intense electromagnetic ion cyclotron (EMIC) waves were detected by Van Allen Probe A (Radiation Belt Storm Probes‐A). We quantitatively analyze a conjunction event when Van Allen Probe A was located approximately along the same magnetic field line as MetOp‐01, which detected simultaneous precipitation of >30 keV protons and energetic electrons over an unexpectedly broad energy range (>~30 keV). Multipoint observations together with quasi‐linear theory provide direct evidence that the observed electron precipitation at higher energy (>~700 k. . .
Date: 07/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL078604 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL078604
More Details
2017
Authors: Khazanov K. G. V., Sibeck D. G., Tel'nikhin A. A., and Kronberg T. K.
Title: Spectra of keV protons related to ion-cyclotron wave packets
Abstract: We use the Fokker-Planck-Kolmogorov equation to study the statistical aspects of stochastic dynamics of the radiation belt (RB) protons driven by nonlinear electromagnetic ion-cyclotron (EMIC) wave packets. We obtain the spectra of keV protons scattered by these waves that show steeping near the gyroresonance, the signature of resonant wave-particle interaction that cannot be described by a simple power law. The most likely mechanism for proton precipitation events in RBs is shown to be nonlinear wave-particle interaction, namely, the scattering of RB protons into the loss cone by EMIC waves.
Date: 01/2017 Publisher: Physics of Plasmas DOI: http://dx.doi.org/10.1063/1.4973323 Available at: http://http://aip.scitation.org/doi/abs/10.1063/1.4973323
More Details
2016
Authors: Chen Yue, Reeves Geoffrey D, Cunningham Gregory S., Redmon Robert J., and Henderson Michael G.
Title: Forecasting and remote sensing outer belt relativistic electrons from low Earth orbit
Abstract: This study demonstrates the feasibility and reliability of using observations from low Earth orbit (LEO) to forecast and nowcast relativistic electrons in the outer radiation belt. We first report a high cross-energy, cross-pitch-angle coherence discovered between the trapped MeV electrons and precipitating approximately hundreds (~100s) of keV electrons—observed by satellites with very different altitudes—with correlation coefficients as high as ≳ 0.85. Based upon the coherence, we then tested the feasibility of applying linear prediction filters to LEO data to predict the arrival of new MeV electrons during geomagnetic storms, as well as their evolving distributions afterward. Reliability of these predictive filters is quantified by the performance efficiency with values as high . . .
Date: 02/2016 Publisher: Geophysical Research Letters Pages: 1031 - 1038 DOI: 10.1002/2015GL067481 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2015GL067481/full
More Details
Authors: Ripoll J. F., Reeves G., Cunningham G., Loridan V., Denton M., et al.
Title: Reproducing the observed energy-dependent structure of Earth's electron radiation belts during storm recovery with an event-specific diffusion model
Abstract: We present dynamic simulations of energy-dependent losses in the radiation belt " slot region" and the formation of the two-belt structure for the quiet days after the March 1st storm. The simulations combine radial diffusion with a realistic scattering model, based data-driven spatially and temporally-resolved whistler mode hiss wave observations from the Van Allen Probes satellites. The simulations reproduce Van Allen Probes observations for all energies and L-shells (2 to 6) including (a) the strong energy-dependence to the radiation belt dynamics (b) an energy-dependent outer boundary to the inner zone that extends to higher L-shells at lower energies and (c) an " S-shaped" energy-dependent inner boundary to the outer zone that results from the competition between diffusive radial tran. . .
Date: 05/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL068869 Available at: http://doi.wiley.com/10.1002/2016GL068869
More Details
Authors: Foster J. C., Erickson P. J., Omura Y., Baker D N, Kletzing C A, et al.
Title: Van Allen Probes Observations of Prompt MeV Radiation Belt Electron Acceleration in Non-Linear Interactions with VLF Chorus
Abstract: Prompt recovery of MeV electron populations in the post-storm core of the outer terrestrial radiation belt involves local acceleration of a seed population of energetic electrons in interactions with VLF chorus waves. Electron interactions during the generation of VLF rising tones are strongly non-linear, such that a fraction of the relativistic electrons at resonant energies are trapped by waves, leading to significant non-adiabatic energy exchange. Through detailed examination of VLF chorus and electron fluxes observed by Van Allen Probes, we investigate the efficiency of non-linear processes for acceleration of electrons to MeV energies. We find through subpacket analysis of chorus waveforms that electrons with initial energy 100s keV - 3 MeV can be accelerated by 50 keV - 200 keV in re. . .
Date: 12/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023429 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023429/full
More Details
2014
Authors: Murphy Kyle R., Mann Ian R., and Ozeke Louis G.
Title: A ULF wave driver of ring current energization
Abstract: ULF wave radial diffusion plays an important role in the transport of energetic electrons in the outer radiation belt, yet similar ring current transport is seldom considered even though ions satisfy a nearly identical drift resonance condition albeit without the relativistic correction. By examining the correlation between ULF wave power and the response of the ring current, characterized by Dst, we demonstrate a definite correlation between ULF wave power and Dst. Significantly, the lagged correlation peaks such that ULF waves precede the response of the ring current and Dst. We suggest that this correlation is the result of enhanced radial transport and energization of ring current ions through drift resonance and ULF wave radial diffusion of ring current ions. An analysis and compariso. . .
Date: 10/2014 Publisher: Geophysical Research Letters Pages: 6595 - 6602 DOI: 10.1002/grl.v41.1910.1002/2014GL061253 Available at: http://doi.wiley.com/10.1002/grl.v41.19http://doi.wiley.com/10.1002/2014GL061253
More Details