Biblio

Found 6 results
Filters: Keyword is magnetopause  [Clear All Filters]
2017
Authors: Cattell C., Breneman A., Colpitts C., Dombeck J., Thaller S., et al.
Title: Dayside response of the magnetosphere to a small shock compression: Van Allen Probes, Magnetospheric MultiScale, and GOES-13
Abstract: Observations from Magnetospheric MultiScale (~8 Re) and Van Allen Probes (~5 and 4 Re) show that the initial dayside response to a small interplanetary shock is a double-peaked dawnward electric field, which is distinctly different from the usual bipolar (dawnward and then duskward) signature reported for large shocks. The associated ExB flow is radially inward. The shock compressed the magnetopause to inside 8 Re, as observed by MMS, with a speed that is comparable to the ExB flow. The magnetopause speed and the ExB speeds were significantly less than the propagation speed of the pulse from MMS to the Van Allen Probes and GOES-13, which is consistent with the MHD fast mode. There were increased fluxes of energetic electrons up to several MeV. Signatures of drift echoes and response to ULF. . .
Date: 08/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL074895 Available at: onlinelibrary.wiley.com/doi/10.1002/2017GL074895/full
More Details
2016
Authors: Westlake J. H., Cohen I. J., Mauk B H, Anderson B J, Mitchell D G, et al.
Title: The permeability of the magnetopause to a multispecies substorm injection of energetic particles
Abstract: Leakage of ions from the magnetosphere into the magnetosheath remains an important topic in understanding the plasma physics of Earth's magnetopause and the interaction of the solar wind with the magnetosphere. Here using sophisticated instrumentation from two spacecraft (Radiation Belt Storm Probes Ion Composition Experiment on the Van Allen Probes and Energetic Ion Spectrometer on the Magnetospheric Multiscale) spaced uniquely near and outside the dayside magnetopause, we are able to determine the escape mechanisms for large gyroradii oxygen ions and much smaller gyroradii hydrogen and helium ions. The oxygen ions are entrained on the magnetosphere boundary, while the hydrogen and helium ions appear to escape along reconnected field lines. These results have important implications for no. . .
Date: 09/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL070189 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016GL070189/full
More Details
2015
Authors: Walsh B. M., Thomas E. G., Hwang K.-J., Baker J. B. H., Ruohoniemi J. M., et al.
Title: Dense plasma and Kelvin-Helmholtz waves at Earth's dayside magnetopause
Abstract: Spacecraft observations of boundary waves at the dayside terrestrial magnetopause and their ground-based signatures are presented. Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft measured boundary waves at the magnetopause while ground-based HF radar measured corresponding signatures in the ionosphere indicating a large-scale response and tailward propagating waves. The properties of the oscillations are consistent with linear phase Kelvin-Helmholtz waves along the magnetopause boundary. During this time period multiple THEMIS spacecraft also measured a plasmaspheric plume contacting the local magnetopause and mass loading the boundary. Previous work has demonstrated that increasing the density at the magnetopause can lower the efficiency of reconnec. . .
Date: 07/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021014 Available at: http://doi.wiley.com/10.1002/2015JA021014
More Details
Authors: Lugaz N., Farrugia C. J., Huang C.-L., and Spence H E
Title: Extreme geomagnetic disturbances due to shocks within CMEs
Abstract: We report on features of solar wind-magnetosphere coupling elicited by shocks propagating through coronal mass ejections (CMEs) by analyzing the intense geomagnetic storm of 6 August 1998. During this event, the dynamic pressure enhancement at the shock combined with a simultaneous increase in the southward component of the magnetic field resulted in a large earthward retreat of Earth's magnetopause, which remained close to geosynchronous orbit for more than 4 h. This occurred despite the fact that both shock and CME were weak and relatively slow. Another similar example of a weak shock inside a slow CME resulting in an intense geomagnetic storm is the 30 September 2012 event, which strongly depleted the outer radiation belt. We discuss the potential of shocks inside CMEs to cause large . . .
Date: 06/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL064530 Available at: http://doi.wiley.com/10.1002/2015GL064530
More Details
Authors: Archer M. O., and Plaschke F.
Title: What frequencies of standing surface waves can the subsolar magnetopause support?
Abstract: It is has been proposed that the subsolar magnetopause may support its own eigenmode, consisting of propagating surface waves which reflect at the northern/southern ionospheres forming a standing wave. While the eigenfrequencies of these so-called Kruskal-Schwartzschild (KS) modes have been estimated under typical conditions, the potential distribution of frequencies over the full range of solar wind conditions is not know. Using models of the magnetosphere and magnetosheath applied to an entire solar cycle's worth of solar wind data, we perform time-of-flight calculations yielding a database of KS mode frequencies. Under non-storm times or northward interplanetary magnetic field (IMF), the most likely fundamental frequency is calculated to be inline image mHz, consistent with previous est. . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020545 Available at: http://doi.wiley.com/10.1002/2014JA020545
More Details
2014
Authors: Glauert Sarah A, Horne Richard B, and Meredith Nigel P
Title: Simulating the Earth's radiation belts: Internal acceleration and continuous losses to the magnetopause
Abstract: In the Earth's radiation belts the flux of relativistic electrons is highly variable, sometimes changing by orders of magnitude within a few hours. Since energetic electrons can damage satellites it is important to understand the processes driving these changes and, ultimately, to develop forecasts of the energetic electron population. One approach is to use three-dimensional diffusion models, based on a Fokker-Planck equation. Here we describe a model where the phase-space density is set to zero at the outer L∗ boundary, simulating losses to the magnetopause, using recently published chorus diffusion coefficients for 1.5≤L∗≤10. The value of the phase-space density on the minimum-energy boundary is determined from a recently published, solar wind-dependent, statistical model. Our s. . .
Date: 09/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 7444 - 7463 DOI: 10.1002/jgra.v119.910.1002/2014JA020092 Available at: http://doi.wiley.com/10.1002/jgra.v119.9http://doi.wiley.com/10.1002/2014JA020092
More Details