Biblio

Found 11 results
Filters: Keyword is THEMIS  [Clear All Filters]
2019
Authors: Zhang X.‐J., Mourenas D., Artemyev A. V., Angelopoulos V, Bortnik J, et al.
Title: Nonlinear Electron Interaction With Intense Chorus Waves: Statistics of Occurrence Rates
Abstract: A comprehensive statistical analysis on 8 years of lower‐band chorus wave packets measured by the Van Allen Probes and THEMIS spacecraft is performed to examine whether, when, and where these waves are above the theoretical threshold for nonlinear resonant wave‐particle interaction. We find that ∼5–30% of all chorus waves interact nonlinearly with ∼30‐ to 300‐keV electrons possessing equatorial pitch angles of >40° in the outer radiation belt, especially during disturbed (AE>500 nT) periods with energetic particles associated with injections from the plasma sheet. Such considerable occurrence rates of nonlinear interactions imply that the evolution of energetic electron fluxes should be dominated by nonlinear effects, rather than by quasi‐linear diffusion as commonly assum. . .
Date: 06/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083833 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083833
More Details
2018
Authors: Liu Si, Yan Qi, Yang Chang, Zhou Qinghua, He Zhaoguo, et al.
Title: Quantifying Extremely Rapid Flux Enhancements of Radiation Belt Relativistic Electrons Associated With Radial Diffusion
Abstract: Previous studies have revealed a typical picture that seed electrons are transported inward under the drive of radial diffusion and then accelerated via chorus to relativistic energies. Here we show a potentially different process during the 2–3 October 2013 storm when Van Allen Probes observed extremely rapid (by about 50 times in 2 h) flux enhancements of relativistic (1.8–3.4 MeV) electrons but without distinct chorus at lower L-shells. Meanwhile, Time History of Events and Macroscale Interactions during Substorms satellites simultaneously measured enhanced chorus and fluxes of energetic (∼100–300 keV) seed electrons at higher L-shells. Numerical calculations show that chorus can efficiently accelerate seed electrons at L ∼ 8.3. Then radial diffusion further increased the phas. . .
Date: 02/2018 Publisher: Geophysical Research Letters Pages: 1262 - 1270 DOI: 10.1002/grl.v45.310.1002/2017GL076513 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL076513/full
More Details
Authors: Boyd A.J., Turner D.L., Reeves G.D., Spence H.E., Baker D.N., et al.
Title: What Causes Radiation Belt Enhancements: A Survey of the Van Allen Probes Era
Abstract: We survey radiation belt enhancement events during the Van Allen Probes era to determine what mechanism is the dominant cause of enhancements and where it is most effective. Two primary mechanisms have been proposed: (1) betatron/Fermi acceleration due to the Earthward radial transport of electrons which produces monotonic gradients in phase space density (PSD) and (2) “local acceleration" due to gyro/Landau resonant interaction with electromagnetic waves which produces radially localized, growing peaks in PSD. To differentiate between these processes, we examine radial profiles of PSD in adiabatic coordinates using data from the Van Allen Probes and THEMIS satellites for 80 outer belt enhancement events from October 2012‐April 2017 This study shows that local acceleration is the domin. . .
Date: 05/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL077699 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL077699
More Details
2017
Authors: Goldstein J., Angelopoulos V., De Pascuale S., Funsten H. O., Kurth W. S., et al.
Title: Cross-scale observations of the 2015 St. Patrick's day storm: THEMIS, Van Allen Probes, and TWINS
Abstract: We present cross-scale magnetospheric observations of the 17 March 2015 (St. Patrick's Day) storm, by Time History of Events and Macroscale Interactions during Substorms (THEMIS), Van Allen Probes (Radiation Belt Storm Probes), and Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS), plus upstream ACE/Wind solar wind data. THEMIS crossed the bow shock or magnetopause 22 times and observed the magnetospheric compression that initiated the storm. Empirical models reproduce these boundary locations within 0.7 RE. Van Allen Probes crossed the plasmapause 13 times; test particle simulations reproduce these encounters within 0.5 RE. Before the storm, Van Allen Probes measured quiet double-nose proton spectra in the region of corotating cold plasma. About 15 min after a 0605 UT dayside sout. . .
Date: 01/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023173 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023173
More Details
Authors: Goldstein J, Angelopoulos V, De Pascuale S., Funsten H O, Kurth W S, et al.
Title: Cross-scale observations of the 2015 St. Patrick's day storm: THEMIS, Van Allen Probes, and TWINS
Abstract: We present cross-scale magnetospheric observations of the 17 March 2015 (St. Patrick's Day) storm, by Time History of Events and Macroscale Interactions during Substorms (THEMIS), Van Allen Probes (Radiation Belt Storm Probes), and Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS), plus upstream ACE/Wind solar wind data. THEMIS crossed the bow shock or magnetopause 22 times and observed the magnetospheric compression that initiated the storm. Empirical models reproduce these boundary locations within 0.7 RE. Van Allen Probes crossed the plasmapause 13 times; test particle simulations reproduce these encounters within 0.5 RE. Before the storm, Van Allen Probes measured quiet double-nose proton spectra in the region of corotating cold plasma. About 15 min after a 0605 UT dayside sout. . .
Date: 01/2017 Publisher: Journal of Geophysical Research: Space Physics Pages: 368 - 392 DOI: 10.1002/jgra.v122.110.1002/2016JA023173 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023173/full
More Details
2015
Authors: Turner D. L., Claudepierre S G, Fennell J. F., O'Brien T P, Blake J B, et al.
Title: Energetic electron injections deep into the inner magnetosphere associated with substorm activity
Abstract: From a survey of the first nightside season of NASA's Van Allen Probes mission (Dec/2012 – Sep/2013), 47 energetic (10s to 100s of keV) electron injection events were found at L-shells ≤ 4, all of which are deeper than any previously reported substorm-related injections. Preliminary details from these events are presented, including how: all occurred shortly after dipolarization signatures and injections were observed at higher L-shells; the deepest observed injection was at L~2.5; and, surprisingly, L≤4 injections are limited in energy to ≤250 keV. We present a detailed case study of one example event revealing that the injection of electrons down to L~3.5 was different from injections observed at higher L and likely resulted from drift resonance with a fast magnetosonic wave in t. . .
Date: 02/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL063225 Available at: http://doi.wiley.com/10.1002/2015GL063225
More Details
Authors: Cho Junghee, Lee Dae-Young, Kim Jin-Hee, Shin Dae-Kyu, Kim Kyung-Chan, et al.
Title: New model fit functions of the plasmapause location determined using THEMIS observations during the ascending phase of Solar Cycle 24
Abstract: It is well known that the plasmapause is influenced by the solar wind and magnetospheric conditions. Empirical models of its location have been previously developed such as those by O'Brien and Moldwin (2003) and Larsen et al. (2006). In this study, we identified the locations of the plasmapause using the plasma density data obtained from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellites. We used the data for the period (2008–2012) corresponding to the ascending phase of Solar Cycle 24. Our database includes data from over a year of unusually weak solar wind conditions, correspondingly covering the plasmapause locations in a wider L range than those in previous studies. It also contains many coronal hole stream intervals during which the plasmasp. . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021030 Available at: http://doi.wiley.com/10.1002/2015JA021030
More Details
Authors: Nakamura Satoko, Omura Yoshiharu, Shoji Masafumi, Nosé Masahito, Summers Danny, et al.
Title: Sub-packet structures in EMIC rising tone emissions observed by the THEMIS probes
Abstract: We report sub-packet structures found in electromagnetic ion cyclotron (EMIC) rising tone emissions observed by the Time History of Events and Macroscale Interactions during Substorms (THEMIS) probles. We investigate three typical cases in detail. The first case shows a continuous single rising tone with obvious four sub-packets, and the second case is characterized by a patchy emission with multiple sub-packets triggered in a broadband frequency. The third case looks like a smooth rising tone without any obvious sub-packet in the FFT spectrum, while its amplitude contains small peaks with increasing frequencies. The degree of polarization of each sub-packet is generally higher than 0.8 with a left-handed polarization, and the wave direction of the sub-packets is typically field-aligned. W. . .
Date: 08/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020764 Available at: http://doi.wiley.com/10.1002/2014JA020764
More Details
2014
Authors: Lee Justin H., and Angelopoulos Vassilis
Title: Observations and modeling of EMIC wave properties in the presence of multiple ion species as function of magnetic local time
Abstract: Electromagnetic ion cyclotron (EMIC) wave generation and propagation in Earth's magnetosphere depend on readily measurable hot (a few to tens of keV) plasma sheet ions, elusive plasmaspheric or ionospheric cold (sub-eV to a few eV) ions, and partially heated warm ions (tens to hundreds of eV). Previous work has assumed all low-energy ions are cold and not considered possible effects of warm ions. Using measurements by multiple Time History of Events and Macroscale Interactions during Substorms spacecraft, we analyze four typical EMIC wave events in the four magnetic local time sectors and consider the properties of both cold and warm ions supplied from previous statistical studies to interpret the wave observations using linear theory. As expected, we find that dusk EMIC waves grow due to . . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020469 Available at: http://doi.wiley.com/10.1002/2014JA020469
More Details
Authors: Gao X., Li W, Thorne R M, Bortnik J, Angelopoulos V, et al.
Title: Statistical results describing the bandwidth and coherence coefficient of whistler mode waves using THEMIS waveform data
Abstract: The bandwidths and coherence coefficients of lower band whistler mode waves are analyzed using Time History of Events and Macroscale Interactions during Substorms (THEMIS) waveform data for rising tones, falling tones, and hiss-like emissions separately. We also evaluate their dependences on the spatial location, electron density, the ratio of plasma frequency to local electron gyrofrequency (fpe/fce), and the wave amplitude. Our results show that the bandwidth normalized by the local electron gyrofrequency (fce) of rising and falling tones is very narrow (~0.01 fce), smaller than that of the hiss-like emissions (~0.025 fce). Meanwhile, the normalized bandwidth of discrete emissions gradually decreases with increasing wave amplitude, whereas that of hiss-like emissions increases slowly. Th. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020158 Available at: http://doi.wiley.com/10.1002/2014JA020158
More Details
2013
Authors: Lee Jeongwoo, Min Kyungguk, and Kim Kap-Sung
Title: Characteristic dimension of electromagnetic ion cyclotron wave activity in the magnetosphere
Abstract: [1] In this paper, we estimate the size of coherent activity of electromagnetic ion cyclotron (EMIC) waves using the multi‒spacecraft observations made during the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission. We calculate the cross‒correlations between EMIC wave powers measured by different THEMIS spacecraft, plot them over the separation distances between pairs of observing spacecraft, and determine the 1/e folding distance of the correlations as the characteristic dimension of the coherent wave activity. The characteristic radius in the direction transverse to the local magnetic field is found to lie in rather a wide range of 1500–8600 km varying from the AM to PM sectors and also from hydrogen to helium bands. However, the characteristic d. . .
Date: 04/2013 Publisher: Journal of Geophysical Research: Space Physics Pages: 1651 - 1658 DOI: 10.1002/jgra.50242 Available at: http://doi.wiley.com/10.1002/jgra.50242
More Details