Found 2 results
Filters: Keyword is Diffusion Coefficient  [Clear All Filters]
Authors: Yu Yiqun, Jordanova Vania K., Ridley Aaron J., Albert Jay M, Horne Richard B, et al.
Title: A new ionospheric electron precipitation module coupled with RAM-SCB within the geospace general circulation model
Abstract: Electron precipitation down to the atmosphere due to wave-particle scattering in the magnetosphere contributes significantly to the auroral ionospheric conductivity. In order to obtain the auroral conductivity in global MHD models that are incapable of capturing kinetic physics in the magnetosphere, MHD parameters are often used to estimate electron precipitation flux for the conductivity calculation. Such an MHD approach, however, lacks self-consistency in representing the magnetosphere-ionosphere coupling processes. In this study we improve the coupling processes in global models with a more physical method. We calculate the physics-based electron precipitation from the ring current and map it to the ionospheric altitude for solving the ionospheric electrodynamics. In particular, we use . . .
Date: 09/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022585 Available at:
More Details
Authors: Ozeke Louis G., Mann Ian R., Murphy Kyle R., Rae Jonathan, and Milling David K.
Title: Analytic expressions for ULF wave radiation belt radial diffusion coefficients
Abstract: We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirica. . .
Date: 03/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 1587 - 1605 DOI: 10.1002/2013JA019204 Available at:
More Details