Found 4 results
Filters: Keyword is energetic electron precipitation  [Clear All Filters]
Authors: Capannolo L., Li W, Ma Q, Shen X.‐C., Zhang X.‐J., et al.
Title: Energetic Electron Precipitation: Multievent Analysis of Its Spatial Extent During EMIC Wave Activity
Abstract: Electromagnetic ion cyclotron (EMIC) waves can drive precipitation of tens of keV protons and relativistic electrons, and are a potential candidate for causing radiation belt flux dropouts. In this study, we quantitatively analyze three cases of EMIC‐driven precipitation, which occurred near the dusk sector observed by multiple Low‐Earth‐Orbiting (LEO) Polar Operational Environmental Satellites/Meteorological Operational satellite programme (POES/MetOp) satellites. During EMIC wave activity, the proton precipitation occurred from few tens of keV up to hundreds of keV, while the electron precipitation was mainly at relativistic energies. We compare observations of electron precipitation with calculations using quasi‐linear theory. For all cases, we consider the effects of other magn. . .
Date: 03/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026291 Available at:
More Details
Authors: Li Haimeng, Yuan Zhigang, Yu Xiongdong, Huang Shiyong, Wang Dedong, et al.
Title: The enhancement of cosmic radio noise absorption due to hiss-driven energetic electron precipitation during substorms
Abstract: The Van-Allen probes, low-altitude NOAA satellite, MetOp satellite and riometer are used to analyze variations of precipitating energetic electron fluxes and cosmic radio noise absorption (CNA) driven by plasmaspheric hiss with respect to geomagnetic activities. The hiss-driven energetic electron precipitations (at L~4.7-5.3, MLT~8-9) are observed during geomagnetic quiet condition and substorms, respectively. We find that the CNA detected by riometers increased very little in the hiss-driven event during quiet condition on September 06, 2012. The hiss-driven enhancement of riometer was still little during the first substorm on September 30, 2012. However, the absorption detected by the riometer largely increased while the energies of the injected electrons became higher during the second . . .
Date: 06/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021113 Available at:
More Details
Authors: Rodger Craig J., Hendry Aaron T., Clilverd Mark A., Kletzing Craig A., Brundell James B., et al.
Title: High-resolution in situ observations of electron precipitation-causing EMIC waves
Abstract: Electromagnetic ion cyclotron (EMIC) waves are thought to be important drivers of energetic electron losses from the outer radiation belt through precipitation into the atmosphere. While the theoretical possibility of pitch angle scattering-driven losses from these waves has been recognized for more than four decades, there have been limited experimental precipitation observations to support this concept. We have combined satellite-based observations of the characteristics of EMIC waves, with satellite and ground-based observations of the EMIC-induced electron precipitation. In a detailed case study, supplemented by an additional four examples, we are able to constrain for the first time the location, size, and energy range of EMIC-induced electron precipitation inferred from coincident pr. . .
Date: 11/2015 Publisher: Geophysical Research Letters Pages: 9633 - 9641 DOI: 10.1002/grl.v42.2210.1002/2015GL066581 Available at:
More Details
Authors: Whittaker Ian C., Clilverd Mark A., and Rodger Craig J.
Title: Characteristics of precipitating energetic electron fluxes relative to the plasmapause during geomagnetic storms
Abstract: n this study we investigate the link between precipitating electrons from the Van Allen radiation belts and the dynamical plasmapause. We consider electron precipitation observations from the Polar Orbiting Environmental Satellite (POES) constellation during geomagnetic storms. Superposed epoch analysis is performed on precipitating electron observations for the 13 year period of 1999 to 2012 in two magnetic local time (MLT) sectors, morning and afternoon. We assume that the precipitation is due to wave-particle interactions and our two MLT sectors focus on chorus (outside the plasmapause) and plasmaspheric hiss (inside the plasmapause) waves. We generate simple expressions based on the geomagnetic index, Dst, which reproduce the chorus-driven observations for the >30 keV precipitating ele. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020446 Available at:
More Details