Found 7 results
Filters: Keyword is Solar wind  [Clear All Filters]
Authors: Stepanova M., Antonova E.E., Moya P.S., Pinto V.A., and Valdivia J.A.
Title: Multisatellite Analysis of Plasma Pressure in the Inner Magnetosphere During the 1 June 2013 Geomagnetic Storm
Abstract: Using data from Defense Meteorological Satellite Program 16–18, National Oceanic and Atmospheric Administration 15–19, and METOP 1–2 satellites, we reconstructed for the first time a two‐dimensional statistical distribution of plasma pressure in the inner magnetosphere during the 1 June 2013 geomagnetic storm with time resolution of 6 hr. Simultaneously, we used the data from Van Allen Probes and Time History of Events and Macroscale Interactions missions to obtain the in situ plasma pressure in the equatorial plane. This allowed us to corroborate that the dipole mapping works reasonably well during the storm time and that variations of plasma pressure are consistent at low and high altitudes; namely, we observed a drastic increase in plasma pressure a few hours before the storm on. . .
Date: 01/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025965 Available at:
More Details
Authors: Kilpua E. K. J., Turner D. L., Jaynes A. N., Hietala H., Koskinen H. E. J., et al.
Title: Outer Van Allen Radiation Belt Response to Interacting Interplanetary Coronal Mass Ejections
Abstract: We study the response of the outer Van Allen radiation belt during an intense magnetic storm on 15–22 February 2014. Four interplanetary coronal mass ejections (ICMEs) arrived at Earth, of which the three last ones were interacting. Using data from the Van Allen Probes, we report the first detailed investigation of electron fluxes from source (tens of kiloelectron volts) to core (megaelectron volts) energies and possible loss and acceleration mechanisms as a response to substructures (shock, sheath and ejecta, and regions of shock‐compressed ejecta) in multiple interacting ICMEs. After an initial enhancement induced by a shock compression of the magnetosphere, core fluxes strongly depleted and stayed low for 4 days. This sustained depletion can be related to a sequence of ICME substruc. . .
Date: 03/2019 Publisher: Journal of Geophysical Research: Space Physics Pages: 1927 - 1947 DOI: 10.1029/2018JA026238 Available at:
More Details
Title: On the relation between radiation belt electrons and solar wind parameters/geomagnetic indices: Dependence on the first adiabatic invariant and L*
Abstract: The relation between radiation belt electrons and solar wind/magnetospheric processes is of particular interest due to both scientific and practical needs. Though many studies have focused on this topic, electron data from Van Allen Probes with wide L shell coverage and fine energy resolution, for the first time, enabled this statistical study on the relation between radiation belt electrons and solar wind parameters/geomagnetic indices as a function of first adiabatic invariant μ and L*. Good correlations between electron phase space density (PSD) and solar wind speed, southward IMF Bz, SYM-H, and AL indices are found over wide μ and L* ranges, with higher correlation coefficients and shorter time lags for low-μ electrons than high-μ electrons; the anticorrelation between electron PSD. . .
Date: 01/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023658 Available at:
More Details
Authors: Xiong Ying, Xie Lun, Pu Zuyin, Fu Suiyan, Chen Lunjin, et al.
Title: Responses of relativistic electron fluxes in the outer radiation belt to geomagnetic storms
Abstract: Geomagnetic storms can either increase or decrease relativistic electron fluxes in the outer radiation belt. A statistical survey of 84 isolated storms demonstrates that geomagnetic storms preferentially decrease relativistic electron fluxes at higher energies, while flux enhancements are more common at lower energies. In about 87% of the storms, 0.3–2.5 MeV electron fluxes show an increase, whereas 2.5–14 MeV electron fluxes increase in only 35% of the storms. Superposed epoch analyses suggest that such “energy-dependent” responses of electrons preferably occur during conditions of high solar wind density which is favorable to generate magnetospheric electromagnetic ion cyclotron (EMIC) waves, and these events are associated with relatively weaker chorus activities. We have examin. . .
Date: 11/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: 9513–9523 DOI: 10.1002/2015JA021440 Available at:
More Details
Authors: Macek W. M., Wawrzaszek A., and Sibeck D G
Title: THEMIS observation of intermittent turbulence behind the quasi-parallel and quasi-perpendicular shocks
Abstract: Turbulence is complex behavior that is ubiquitous in nature, but its mechanism is still not sufficiently clear. Therefore, the main aim of this paper is analysis of intermittent turbulence in magnetospheric and solar wind plasmas using a statistical approach based on experimental data acquired from space missions. The quintet spacecraft of Time History of Events and Macroscale Interactions during Substorms (THEMIS) allows us to investigate the details of turbulent plasma parameters behind the collisionless shocks. We investigate both the solar wind and magnetospheric data by using statistical probability distribution functions of Elsässer variables that can reveal the intermittent character of turbulence in space plasma. Our results suggest that turbulence behind the quasi-perpendicular s. . .
Date: 09/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: 7466 - 7476 DOI: 10.1002/2015JA021656 Available at:
More Details
Authors: Yang Xiao C., Zhu Guang W., Zhang Xiao X., Sun Yue Q., Liang Jin B., et al.
Title: An unusual long-lived relativistic electron enhancement event excited by sequential CMEs
Abstract: An unusual long-lived intense relativistic electron enhancement event from July to August 2004 is examined using data from Fengyun-1, POES, GOES, ACE, the Cluster Mission and geomagnetic indices. During the initial 6 days of this event, the observed fluxes in the outer zone enhanced continuously and their maximum increased from 2.1 × 102 cm-2·sr-1·s-1 to 3.5 × 104 cm-2·sr-1·s-1, the region of enhanced fluxes extended from L = 3.5-6.5 to L = 2.5-6.5, and the flux peak location shifted inward from L ~ 4.2 to L ~ 3.3. During the following 7 days, without any locational movement, the flux peak increased slowly and exceeded the pre-storm fluxes by about 4 orders of magnitude. Subsequently, the decay rate of relativistic electrons is so slow that the peak re. . .
Date: 10/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA019797 Available at:
More Details
Authors: Hudson M K, Brito Thiago, Elkington Scot, Kress Brian, Li Zhao, et al.
Title: Radiation belt 2D and 3D simulations for CIR-driven storms during Carrington Rotation 2068
Abstract: As part of the International Heliospheric Year, the Whole Heliosphere Interval, Carrington Rotation 2068, from March 20 to April 16, 2008 was chosen as an internationally coordinated observing and modeling campaign. A pair of solar wind structures identified as Corotating Interaction Regions (CIR), characteristic of the declining phase of the solar cycle and solar minimum, was identified in solar wind plasma measurements from the ACE satellite. Such structures have previously been determined to be geoeffective in producing enhanced outer zone radiation belt electron fluxes, on average greater than at solar maximum. MHD fields from the Coupled Magnetosphere–Ionosphere–Thermosphere (CMIT) model driven by ACE solar wind measurements at L1 have been used to drive both 2D and 3D weighted te. . .
Date: 07/2012 Publisher: Journal of Atmospheric and Solar-Terrestrial Physics Pages: 51 - 62 DOI: 10.1016/j.jastp.2012.03.017 Available at:
More Details