Biblio

Found 25 results
Filters: Keyword is Magnetosphere  [Clear All Filters]
2019
Authors: Shen Xiao‐Chen, Li Wen, Ma Qianli, Agapitov Oleksiy, and Nishimura Yukitoshi
Title: Statistical Analysis of Transverse Size of Lower Band Chorus Waves Using Simultaneous Multisatellite Observations
Abstract: Chorus waves are known to accelerate or scatter energetic electrons via quasi‐linear or nonlinear wave‐particle interactions in the Earth's magnetosphere. In this letter, by taking advantage of simultaneous observations of chorus waveforms from at least a pair of probes among Van Allen Probes and/or Time History of Events and Macroscale Interactions during Substorms (THEMIS) missions, we statistically calculate the transverse size of lower band chorus wave elements. The average size of lower band chorus wave element is found to be ~315±32 km over L shells of ~5–6. Furthermore, our results suggest that the scale size of lower band chorus tends to be (1) larger at higher L shells; (2) larger at higher magnetic latitudes, especially on the dayside; and (3) larger in the azimuthal direc. . .
Date: 05/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083118 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083118
More Details
2018
Authors: Mager Pavel N., Mikhailova Olga S., Mager Olga V., and Klimushkin Dmitri Yu.
Title: Eigenmodes of the transverse Alfvénic resonator at the plasmapause: a Van Allen Probes case study
Abstract: A Pc4 ULF wave was detected at spacecraft B of the Van Allen Probes at the plasmapause. A distinctive feature of this wave is the strong periodical modulation of the wave. It is assumed that this modulation is a beating of oscillations close in frequency: at least two harmonics with frequencies of 15.3 and 13.6 MHz are found. It is shown that these harmonics can be the eigenmodes of the transverse resonator at the local maximum of the Alfvén velocity. In addition, the observed wave was in a drift resonance with energetic 80 keV protons and could be generated by an unstable “bump on tail” distribution of protons simultaneously observed with the wave. The estimate of the azimuthal wave number m made from the drift resonance condition gives a value of about −100, i.e., it is a westward. . .
Date: 09/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL079596 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL079596
More Details
Authors: Sandhu J. K., Rae I. J., Freeman M. P., Forsyth C., Gkioulidou M., et al.
Title: Energisation of the ring current by substorms
Abstract: The substorm process releases large amounts of energy into the magnetospheric system, although where the energy is transferred to and how it is partitioned remains an open question. In this study, we address whether the substorm process contributes a significant amount of energy to the ring current. The ring current is a highly variable region, and understanding the energisation processes provides valuable insight into how substorm ‐ ring current coupling may contribute to the generation of storm conditions and provide a source of energy for wave driving. In order to quantify the energy input into the ring current during the substorm process, we analyse RBSPICE and HOPE ion flux measurements for H+, O+, and He+. The energy content of the ring current is estimated and binned spatially for. . .
Date: 09/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025766 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025766
More Details
Authors: Jaynes A. N., Ali A. F., Elkington S R, Malaspina D. M., Baker D N, et al.
Title: Fast diffusion of ultra-relativistic electrons in the outer radiation belt: 17 March 2015 storm event
Abstract: Inward radial diffusion driven by ULF waves has long been known to be capable of accelerating radiation belt electrons to very high energies within the heart of the belts, but more recent work has shown that radial diffusion values can be highly event‐specific and mean values or empirical models may not capture the full significance of radial diffusion to acceleration events. Here we present an event of fast inward radial diffusion, occurring during a period following the geomagnetic storm of 17 March 2015. Ultra‐relativistic electrons up to ∼8 MeV are accelerated in the absence of intense higher‐frequency plasma waves, indicating an acceleration event in the core of the outer belt driven primarily or entirely by ULF wave‐driven diffusion. We examine this fast diffusion rate alon. . .
Date: 09/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL079786 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL079786
More Details
2017
Authors: Demekhov A. G., Manninen J., ík O., and Titova E. E.
Title: Conjugate Ground-Spacecraft Observations of VLF Chorus Elements
Abstract: We present results of simultaneous observations of VLF chorus elements at the ground-based station Kannuslehto in Northern Finland and on board Van Allen Probe A. Visual inspection and correlation analysis of the data reveal one-to-one correspondence of several (at least 12) chorus elements following each other in a sequence. Poynting flux calculated from electromagnetic fields measured by the Electric and Magnetic Field Instrument Suite and Integrated Science instrument on board Van Allen Probe A shows that the waves propagate at small angles to the geomagnetic field and oppositely to its direction, that is, from northern to southern geographic hemisphere. The spacecraft was located at L≃4.1 at a geomagnetic latitude of −12.4∘ close to the plasmapause and inside a localized density . . .
Date: 12/2017 Publisher: Geophysical Research Letters Pages: 11,735 - 11,744 DOI: 10.1002/2017GL076139 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL076139/full
More Details
Authors: Tetrick S. S., Engebretson M. J., Posch J. L., Olson C. N., Smith C W, et al.
Title: Location of intense electromagnetic ion cyclotron (EMIC) wave events relative to the plasmapause: Van Allen Probes observations
Abstract: We have studied the spatial location relative to the plasmapause (PP) of the most intense electromagnetic ion cyclotron (EMIC) waves observed on Van Allen Probes A and B during their first full precession in local time. Most of these waves occurred over an L range of from -1 to +2 RE relative to the PP. Very few events occurred only within 0.1 RE of the PP, and events with a width in L of < 0.2 REoccurred both inside and outside the PP. Wave occurrence was always associated with high densities of ring current ions; plasma density gradients or enhancements were associated with some events but were not dominant factors in determining the sites of wave generation. Storm main and recovery phase events in the dusk sector were often inside the PP, and dayside events during quiet times and co. . .
Date: 03/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023392 Available at: http://doi.wiley.com/10.1002/2016JA023392
More Details
Authors: Shekhar Sapna, Millan Robyn, and Smith David
Title: A Statistical Study of the Spatial Extent of Relativistic Electron Precipitation with Polar Orbiting Environmental Satellites.
Abstract: Relativistic Electron Precipitation (REP) in the atmosphere can contribute significantly to electron loss from the outer radiation belts. In order to estimate the contribution to this loss, it is important to estimate the spatial extent of the precipitation region. We observed REP with the zenith pointing (0o) Medium Energy Proton Electron Detector (MEPED) on board Polar Orbiting Environmental Satellites (POES), for 15 years (2000-2014) and used both single and multi satellite measurements to estimate an average extent of the region of precipitation in L shell and Magnetic Local Time (MLT). In the duration of 15 years (2000-2014), 31035 REP events were found in this study. Events were found to split into two classes; one class of events coincided with proton precipitation in the P1 channel. . .
Date: 10/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024716 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024716/full
More Details
2016
Authors: Liu H., Zong Q.-G., Zhou X.-Z., Fu S. Y., Rankin R, et al.
Title: Compressional ULF wave modulation of energetic particles in the inner magnetosphere
Abstract: We present Van Allen Probes observations of modulations in the flux of very energetic electrons up to a few MeV and protons between 1200 − 1400 UT on February 19th, 2014. During this event the spacecraft were in the dayside magnetosphere at L⋆≈5.5. The modulations extended across a wide range of particle energies, from 79.80 keV to 2.85 MeV for electrons and from 82.85 keV to 636.18 keV for protons. The fluxes of π/2 pitch angle particles were observed to attain maximum values simultaneously with the ULF compressional magnetic field component reaching a minimum. We use peak-to-valley ratios to quantify the strength of the modulation effect, finding that the modulation is larger at higher energies than at lower energies. It is shown that the compressional wave modulation of the parti. . .
Date: 05/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022706 Available at: http://doi.wiley.com/10.1002/2016JA022706
More Details
Authors: Maldonado Armando A., Chen Lunjin, Claudepierre Seth G., Bortnik Jacob, Thorne Richard M, et al.
Title: Electron butterfly distribution modulation by magnetosonic waves
Abstract: The butterfly pitch angle distribution is observed as a dip in an otherwise normal distribution of electrons centered about αeq=90°. During storm times, the formation of the butterfly distribution on the nightside magnetosphere has been attributed to L shell splitting combined with magnetopause shadowing and strong positive radial flux gradients. It has been shown that this distribution can be caused by combined chorus and magnetosonic wave scattering where the two waves work together but at different local times. Presented in our study is an event on 21 August 2013, using Van Allen Probe measurements, where a butterfly distribution formation is modulated by local magnetosonic coherent magnetosonic waves intensity. Transition from normal to butterfly distributions coincides with rising m. . .
Date: 04/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL068161 Available at: http://doi.wiley.com/10.1002/2016GL068161http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2016GL068161http://api.wiley.com/onlinelibrary/chorus/v1/articles/10.1002%2F2016GL068161
More Details
Authors: Sarno-Smith Lois K., Liemohn Michael W., Skoug Ruth M., Larsen Brian A., Moldwin Mark B., et al.
Title: Local time variations of high-energy plasmaspheric ion pitch angle distributions
Abstract: Recent observations from the Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument revealed a persistent depletion in the 1–10 eV ion population in the postmidnight sector during quiet times in the 2 < L < 3 region. This study explores the source of this ion depletion by developing an algorithm to classify 26 months of pitch angle distributions measured by the HOPE instrument. We correct the HOPE low energy fluxes for spacecraft potential using measurements from the Electric Field and Waves (EFW) instrument. A high percentage of low count pitch angle distributions is found in the postmidnight sector coupled with a low percentage of ion distributions peaked perpendicular to the field line. A peak in loss cone distributions in the dusk sector is also observed. These results char. . .
Date: 07/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA022301 Available at: http://doi.wiley.com/10.1002/2015JA022301
More Details
2015
Authors: Skov Tamitha Mulligan, Fennell Joseph F., Roeder James L., Blake Bernard, and Claudepierre Seth G.
Title: Internal Charging Hazards in Near-Earth Space During Solar Cycle 24 Maximum: Van Allen Probes Measurements
Abstract: The Van Allen Probes mission provides an unprecedented opportunity to make detailed measurements of electrons and protons in the inner magnetosphere during the weak solar maximum period of cycle 24. The MagEIS suite of sensors measures energy spectra and fluxes of charged particles in the space environment. The calculations show that these fluxes result in electron deposition rates high enough to cause internal charging. We use omnidirectional fluxes of electrons and protons to calculate the dose under varying materials and thicknesses of shielding. We show examples of charge deposition rates during the times of nominal and high levels of penetrating fluxes in the inner magnetosphere covering the period from the beginning of 2013 through mid-2014. These charge deposition rates are related . . .
Date: 09/2015 Publisher: IEEE Transactions on Plasma Science Pages: 3070 - 3074 DOI: 10.1109/TPS.2015.2468214 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7247811http://xplorestaging.ieee.org/ielx7/27/7247791/07247811.pdf?arnumber=7247811
More Details
Authors: Dixon P., MacDonald E A, Funsten H O, Glocer A., Grande M., et al.
Title: Multipoint observations of the open-closed field line boundary as observed by the Van Allen Probes and geostationary satellites during the November 14 th 2012 geomagnetic storm
Abstract: The twin Van Allen Probes spacecraft witnessed a series of lobe encounters between 0200 and 0515 UT on November 14th 2012. Although lobe entry had been observed previously by the other spacecraft, the two Van Allen Probe spacecraft allow us to observe the motion of the boundary for the first time. Moreover, this event is unique in that it consists of a series of six quasi-periodic lobe entries. The events occurred on the dawn flank between 4 and 6.6 local time and at altitudes between 5.6 and 6.2 RE. During the events Dst dropped to less than -100nT with the IMF being strongly southward (Bz = −15nT) and eastward (By = 20 nT). Observations by LANL GEO spacecraft at geosynchronous orbit also show lobe encounters in the northern hemisphere and on the dusk flank. The two spacecraf. . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020883 Available at: http://doi.wiley.com/10.1002/2014JA020883
More Details
Authors: Lessard Marc R., Lindgren Erik A., Engebretson Mark J, and Weaver Carol
Title: Solar cycle dependence of ion cyclotron wave frequencies
Abstract: Electromagnetic ion cyclotron (EMIC) waves have been studied for decades, though remain a fundamentally important topic in heliospheric physics. The connection of EMIC waves to the scattering of energetic particles from Earth's radiation belts is one ofmany topics that motivate the need for a deeper understanding of characteristics and occurrence distributions of the waves. In this study, we show that EMIC wave frequencies, as observed at Halley Station in Antarctica from 2008 through 2012, increase by approximately 60% from a minimum in 2009 to the end of 2012. Assuming that these waves are excited in the vicinity of the plasmapause, the change in Kp in going from solar minimum to near solar maximum would drive increased plasmapause erosion, potentially shifting the generation region of t. . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020791 Available at: http://doi.wiley.com/10.1002/2014JA020791
More Details
Authors: Allen R. C., Zhang J. -C., Kistler L. M., Spence H E, Lin R. -L., et al.
Title: A statistical study of EMIC waves observed by Cluster: 1. Wave properties
Abstract: Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, as well as local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the MLT-L frame within a limited MLAT range. In this study, we present a statistical analysis of EMIC wave properties using ten years (2001–2010) of data from Cluster, totaling 25,431 minutes of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs. . .
Date: 06/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021333 Available at: http://doi.wiley.com/10.1002/2015JA021333
More Details
Authors: Archer M. O., and Plaschke F.
Title: What frequencies of standing surface waves can the subsolar magnetopause support?
Abstract: It is has been proposed that the subsolar magnetopause may support its own eigenmode, consisting of propagating surface waves which reflect at the northern/southern ionospheres forming a standing wave. While the eigenfrequencies of these so-called Kruskal-Schwartzschild (KS) modes have been estimated under typical conditions, the potential distribution of frequencies over the full range of solar wind conditions is not know. Using models of the magnetosphere and magnetosheath applied to an entire solar cycle's worth of solar wind data, we perform time-of-flight calculations yielding a database of KS mode frequencies. Under non-storm times or northward interplanetary magnetic field (IMF), the most likely fundamental frequency is calculated to be inline image mHz, consistent with previous est. . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020545 Available at: http://doi.wiley.com/10.1002/2014JA020545
More Details
2014
Authors: Mauk B H, Blake J B, Baker D N, Clemmons J. H., Reeves G D, et al.
Title: The Energetic Particle Detector (EPD) Investigation and the Energetic Ion Spectrometer (EIS) for the Magnetospheric Multiscale (MMS) Mission
Abstract: The Energetic Particle Detector (EPD) Investigation is one of 5 fields-and-particles investigations on the Magnetospheric Multiscale (MMS) mission. MMS comprises 4 spacecraft flying in close formation in highly elliptical, near-Earth-equatorial orbits targeting understanding of the fundamental physics of the important physical process called magnetic reconnection using Earth’s magnetosphere as a plasma laboratory. EPD comprises two sensor types, the Energetic Ion Spectrometer (EIS) with one instrument on each of the 4 spacecraft, and the Fly’s Eye Energetic Particle Spectrometer (FEEPS) with 2 instruments on each of the 4 spacecraft. EIS measures energetic ion energy, angle and elemental compositional distributions from a required low energy limit of 20 keV for protons and 45 keV for o. . .
Date: 06/2014 Publisher: Space Science Reviews DOI: 10.1007/s11214-014-0055-5 Available at: http://link.springer.com/10.1007/s11214-014-0055-5http://link.springer.com/content/pdf/10.1007/s11214-014-0055-5
More Details
Authors: Sarris T. E.
Title: Estimates of the power per mode number of broadband ULF waves at geosynchronous orbit
Abstract: In studies of radial diffusion processes in the magnetosphere it is well known that ultralow frequency (ULF) waves of frequency mωd can resonantly interact with particles of drift frequency ωd, where m is the waves' azimuthal mode number. Due to difficulties in estimating m, an oversimplifying assumption is often made in simulations, namely that all ULF wave power is located at a single mode number. In this paper a technique is presented for extracting information on the distribution of ULF power in a range of azimuthal mode numbers. As a first step, the cross power and phase differences between time series from azimuthally aligned magnetometers are calculated. Subsequently, through integrating the ULF power at particular ranges of phase differences that correspond to particular mode num. . .
Date: 07/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 5539 - 5550 DOI: 10.1002/2013JA019238 Available at: http://doi.wiley.com/10.1002/2013JA019238
More Details
Authors: Foster J C
Title: Imaging the plasmasphere with ground based GPS TEC observations and comparisons with in situ plasmaspheric observations with Van Allen Probes
Abstract: For over a decade, incoherent scatter radar observations of the mid and auroral-latitude ionosphere combined with ground based GPS observations of total electron content (TEC) have been used to study the intense storm enhanced density (SED) plumes that form over the Americas during major geomagnetic storms [1]. Magnetic field mapping of the ionospheric observations to magnetospheric heights revealed close correspondence between the SED and plasmasphere erosion plumes observed from space in EUV imagery by the IMAGE satellite [2]. During the current solar cycle the global distribution of GPS receivers used in creating the TEC maps and movies has increased significantly providing near-continuous two-dimensional coverage of TEC morphology and dynamics over much the northern hemisphere mid and . . .
Date: 08/2014 Publisher: IEEE DOI: 10.1109/URSIGASS.2014.6929943 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6929943
More Details
Authors: Foster John C, and Erickson Philip J.
Title: Initial observations of plasma waves in the sub-auroral polarization stream with the Van Allen Probes
Abstract: The Sub-Auroral Polarization Stream (SAPS) is a geospace boundary layer phenomenon associated with the interaction of the warm plasma of the magnetospheric ring current with the cold ions and electrons of the outer plasmasphere [1]. Driven by ring current enhancements during magnetospheric disturbances, SAPS location, intensity, and characteristics are greatly influenced by the underlying ionosphere. Strong M-I coupling by means of field-aligned currents creates a high-speed (>1000 m/s) westward plasma flow channel in the ionosphere at pre-midnight/post-noon local times which is readily observable by incoherent scatter [2] and HF radars and in plasma drift observations by low-altitude spacecraft (e.g. DMSP). The fast ionospheric flows generate E-region irregularities providing for addition. . .
Date: 08/2014 Publisher: IEEE DOI: 10.1109/URSIGASS.2014.6929852 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6929852
More Details
Authors: Wang X., Malaspina D. M., Ergun R. E., and M. Horányi.
Title: Photoelectron-mediated spacecraft potential fluctuations
Abstract: Electric field fluctuations such as those due to plasma waves in Earth's magnetosphere may modulate photoelectrons emitted from spacecraft surface, causing fluctuations in spacecraft potential. We experimentally investigate such photoelectron-mediated spacecraft potential fluctuations. The photoelectric charge of a spacecraft model is found to increase with increasing applied electric field as more photoelectrons escape the spacecraft model surface and dissipates with a decrease in the electric field through collection of ambient plasma electrons. When the applied electric field is driven to oscillate at a frequency lower than the response frequency of the spacecraft model, the surface potential follows the electric field oscillations. The spacecraft model maintains an approximately consta. . .
Date: 02/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 1094 - 1101 DOI: 10.1002/2013JA019502 Available at: http://doi.wiley.com/10.1002/2013JA019502
More Details
Authors: Kletzing Craig A.
Title: Progress on understanding chorus emissions from data of the electric and magnetic field instrument suite and integrated science (EMFISIS) on the Van Allen Probes
Abstract: The physics of the creation, loss, and transport of radiation belt particles is intimately connected to the electric and magnetic fields which mediate these processes. A key wave-particle interaction important to both acceleration and loss in the radiation belts is the of whistler-mode chorus interacting with energetic electrons. To measure this important radiation belt interaction, the two-satellite Van Allen Probes mission utilizes one of the most complete sets of measurements ever made in the inner magnetosphere. As part of the mission, the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) investigation is an integrated set of instruments consisting of a tri-axial fluxgate magnetometer (MAG) and a Waves instrument which includes a tri-axial search coil magnet. . .
Date: 08/2014 Publisher: IEEE DOI: 10.1109/URSIGASS.2014.6929872 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6929872
More Details
Authors: Foster John C, and Erickson Philip J.
Title: Prompt energization of relativistic and highly relativistic electrons during a substorm interval
Abstract: On 17 March 2013, a large magnetic storm significantly depleted the multi-MeV radiation belt. We present multi-instrument observations from the Van Allen Probes spacecraft Radiation Belt Storm Probe A and Radiation Belt Storm Probe B at ∼6 Re in the midnight sector magnetosphere and from ground-based ionospheric sensors during a substorm dipolarization followed by rapid reenergization of multi-MeV electrons [1]. A 50% increase in magnetic field magnitude occurred simultaneously with dramatic increases in 100 keV electron fluxes and a 100 times increase in VLF wave intensity. Chorus is excited following the injection of low-energy (1–30 keV) plasma sheet electrons into the inner magnetosphere [2]. During the 17 March substorm injection, cold plasma that had circulated into the nightside. . .
Date: 08/2014 Publisher: IEEE DOI: 10.1109/URSIGASS.2014.6929876 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6929876
More Details
Authors: McCarthy Michael P., Millan Robyn M., Sample John G., and Smith David M.
Title: Radiation belt losses observed from multiple stratospheric balloons over Antarctica
Abstract: Relativistic electrons, trapped by Earth's magnetic field, have received increasing attention since increasing numbers of commercial and research spacecraft traverse regions of high radiation flux. The Van Allen probes were launched into Earth's radiation belts in September 2012, making comprehensive measurements of charged particle fluxes and electromagnetic fields, with the objective of a better understanding of the processes that modulate radiation belt fluxes. Because losses of radiation belt electrons to Earth's atmosphere are very difficult to measure from high altitude spacecraft, a balloon-based program, consisting of campaigns in January 2013 and 2014, was funded to measure losses in conjunction with the Van Allen probes mission. We present results from both balloon campaigns, whi. . .
Date: 08/2014 Publisher: IEEE DOI: 10.1109/URSIGASS.2014.6929960 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6929960
More Details
2013
Authors: Schultz Colin
Title: Dynamics of the Earth's Radiation Belts and Inner Magnetosphere
Abstract: Trapped by Earth's magnetic field far above the planet's surface, the energetic particles that fill the radiation belts are a sign of the Sun's influence and a threat to our technological future. In the AGU monograph Dynamics of the Earth's Radiation Belts and Inner Magnetosphere, editors Danny Summers, Ian R. Mann, Daniel N. Baker, and Michael Schulz explore the inner workings of the magnetosphere. The book reviews current knowledge of the magnetosphere and recent research results and sets the stage for the work currently being done by NASA's Van Allen Probes (formerly known as the Radiation Belt Storm Probes). In this interview, Eos talks to Summers about magnetospheric research, whistler mode waves, solar storms, and the effects of the radiation belts on Earth.
Date: 12/2013 Publisher: Eos, Transactions American Geophysical Union Pages: 509 - 509 DOI: 10.1002/eost.v94.5210.1002/2013EO520007 Available at: http://doi.wiley.com/10.1002/eost.v94.52http://doi.wiley.com/10.1002/2013EO520007
More Details
2012
Authors: Hudson M K, Brito Thiago, Elkington Scot, Kress Brian, Li Zhao, et al.
Title: Radiation belt 2D and 3D simulations for CIR-driven storms during Carrington Rotation 2068
Abstract: As part of the International Heliospheric Year, the Whole Heliosphere Interval, Carrington Rotation 2068, from March 20 to April 16, 2008 was chosen as an internationally coordinated observing and modeling campaign. A pair of solar wind structures identified as Corotating Interaction Regions (CIR), characteristic of the declining phase of the solar cycle and solar minimum, was identified in solar wind plasma measurements from the ACE satellite. Such structures have previously been determined to be geoeffective in producing enhanced outer zone radiation belt electron fluxes, on average greater than at solar maximum. MHD fields from the Coupled Magnetosphere–Ionosphere–Thermosphere (CMIT) model driven by ACE solar wind measurements at L1 have been used to drive both 2D and 3D weighted te. . .
Date: 07/2012 Publisher: Journal of Atmospheric and Solar-Terrestrial Physics Pages: 51 - 62 DOI: 10.1016/j.jastp.2012.03.017 Available at: http://www.sciencedirect.com/science/article/pii/S1364682612001010
More Details