Biblio

Found 72 results
Filters: Keyword is Radiation belts  [Clear All Filters]

Pages

2017
Authors: Drozdov A. Y., Shprits Y Y, Usanova M. E., Aseev N. A., Kellerman A. C., et al.
Title: EMIC wave parameterization in the long-term VERB code simulation
Abstract: Electromagnetic ion cyclotron (EMIC) waves play an important role in the dynamics of ultrarelativistic electron population in the radiation belts. However, as EMIC waves are very sporadic, developing a parameterization of such wave properties is a challenging task. Currently, there are no dynamic, activity-dependent models of EMIC waves that can be used in the long-term (several months) simulations, which makes the quantitative modeling of the radiation belt dynamics incomplete. In this study, we investigate Kp, Dst, and AE indices, solar wind speed, and dynamic pressure as possible parameters of EMIC wave presence. The EMIC waves are included in the long-term simulations (1 year, including different geomagnetic activity) performed with the Versatile Electron Radiation Belt code, and we co. . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024389 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024389/full
More Details
Authors: Pich Maria de Soria-S, Jun Insoo, and Evans Robin
Title: Empirical radiation belt models: Comparison with in-situ data and implications for environment definition
Abstract: The empirical AP8/AE8 model has been the de-facto Earth's radiation belts engineering reference for decades. The need from the community for a better model incubated the development of AP9/AE9/SPM, which addresses several shortcomings of the old model. We provide additional validation of AP9/AE9 by comparing in-situ electron and proton data from Jason-2, POES, and the Van Allen Probes spacecraft with the 5th, 50th, and 95th percentiles from AE9/AP9 and with the model outputs from AE8/AP8. The relatively short duration of Van Allen Probes and Jason-2 missions means that their measurements are most certainly the result of specific climatological conditions. In LEO, the Jason-2 proton flux is better reproduced by AP8 compared to AP9, while the POES electron data are well enveloped by AE9 5th . . .
Date: 08/2017 Publisher: Space Weather DOI: 10.1002/2017SW001612 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017SW001612/full
More Details
Authors: Su Zhenpeng, Gao Zhonglei, Zheng Huinan, Wang Yuming, Wang Shui, et al.
Title: Rapid loss of radiation belt relativistic electrons by EMIC waves
Abstract: How relativistic electrons are lost is an important question surrounding the complex dynamics of the Earth's outer radiation belt. Radial loss to the magnetopause and local loss to the atmosphere are two main competing paradigms. Here, on the basis of the analysis of a radiation belt storm event on 27 February 2014, we present new evidence for the EMIC wave-driven local precipitation loss of relativistic electrons in the heart of the outer radiation belt. During the main phase of this storm, the radial profile of relativistic electron phase space density was quasi-monotonic, qualitatively inconsistent with the prediction of radial loss theory. The local loss at low L-shells was required to prevent the development of phase space density peak resulting from the radial loss process at high L-. . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024169 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024169/full
More Details
Authors: Chaston C. C., Bonnell J. W., Wygant J R, Reeves G D, Baker D N, et al.
Title: Radial transport of radiation belt electrons in kinetic field-line resonances
Abstract: A representative case study from the Van Allen Probes during a geomagnetic storm recovery phase reveals enhanced electron fluxes at intermediate pitch angles over energies from ~100 keV to 5 MeV coincident with broadband low frequency electromagnetic waves. The statistical properties of these waves are used to build a model for radial diffusion via drift-bounce resonances in kinetic Alfvén eigenmodes/kinetic field-line resonances. Estimated diffusion coefficients indicate timescales for radial transport of the order of hours in storm-time events at energies from <100 keV to MeVs over equatorial pitch angles from the edge of the loss cone to nearly perpendicular to the geomagnetic field. The correlation of kinetic resonances with electron depletions and enhancements during storm main phase. . .
Date: 07/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL074587 Available at: onlinelibrary.wiley.com/doi/10.1002/2017GL074587/full
More Details
Authors: Hao Y. X., Zong Q.-G., Zhou X.-Z., Rankin R, Chen X. R., et al.
Title: Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: Boomerang-shaped pitch angle evolutions
Abstract: We present an analysis of “boomerang-shaped” pitch angle evolutions of outer radiation belt relativistic electrons observed by the Van Allen Probes after the passage of an interplanetary shock on June 7th, 2014. The flux at different pitch angles is modulated by Pc5 waves, with equatorially mirroring electrons reaching the satellite first. For 90∘ pitch angle electrons, the phase change of the flux modulations across energy exceeds 180∘, and increasingly tilts with time. Using estimates of the arrival time of particles of different pitch angles at the spacecraft location, a scenario is investigated in which shock-induced ULF waves interact with electrons through the drift resonance mechanism in a localized region westward of the spacecraft. Numerical calculations on particle energy. . .
Date: 07/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL074006 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL074006/full
More Details
Authors: Ripoll J.-F., Santol?k O., Reeves G., Kurth W S, Denton M., et al.
Title: Effects of whistler mode hiss waves in March 2013
Abstract: We present simulations of the loss of radiation belt electrons by resonant pitch angle diffusion caused by whistler mode hiss waves for March 2013. Pitch angle diffusion coefficients are computed from the wave properties and the ambient plasma data obtained by the Van Allen Probes with a resolution of 8 hours and 0.1 L-shell. Loss rates follow a complex dynamic structure, imposed by the wave and plasma properties. Hiss effects can be strong, with minimum lifetimes (of ~1 day) moving from energies of ~100 keV at L~5 up to ~2 MeV at L~2, and stop abruptly, similarly to the observed energy-dependent inner belt edge. Periods when the plasmasphere extends beyond L~5 favor long-lasting hiss losses from the outer belt. Such loss rates are embedded in a reduced Fokker-Planck code and validated aga. . .
Date: 06/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024139 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024139/full
More Details
Authors: Sarris Theodore E., Li Xinlin, Temerin Michael, Zhao Hong, Califf Sam, et al.
Title: On the Relationship Between Electron Flux Oscillations and ULF Wave-Driven Radial Transport
Abstract: The objective of this study is to investigate the relationship between the levels of electron flux oscillations and radial diffusion for different Phase Space Density (PSD) gradients, through observation and particle tracing simulations under the effect of model Ultra Low Frequency (ULF) fluctuations. This investigation aims to demonstrate that electron flux oscillation is associated with and could be used as an indicator of ongoing radial diffusion. To this direction, flux oscillations are observed through the Van Allen Probes’ MagEIS energetic particle detector; subsequently, flux oscillations are produced in a particle tracing model that simulates radial diffusion by using model magnetic and electric field fluctuations that are approximating measured magnetic and electric field fluctu. . .
Date: 06/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023741 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023741/full
More Details
Authors: Hwang J., Shin D. K., Yoon P. H., Kurth W S, Larsen B A, et al.
Title: Roles of hot electrons in generating upper-hybrid waves in the earth's radiation belt
Abstract: Electrostatic fluctuations near upper-hybrid frequency, which are sometimes accompanied by multiple-harmonic electron cyclotron frequency bands above and below the upper-hybrid frequency, are common occurrences in the Earth's radiation belt, as revealed through the twin Van Allen Probe spacecrafts. It is customary to use the upper-hybrid emissions for estimating the background electron density, which in turn can be used to determine the plasmapause locations, but the role of hot electrons in generating such fluctuations has not been discussed in detail. The present paper carries out detailed analyses of data from the Waves instrument, which is part of the Electric and Magnetic Field Instrument Suite and Integrated Science suite onboard the Van Allen Probes. Combined with the theoretical ca. . .
Date: 06/2017 Publisher: Physics of Plasmas Pages: 062904 DOI: 10.1063/1.4984249 Available at: http://aip.scitation.org/doi/10.1063/1.4984249
More Details
Authors: Drozdov A. Y., Shprits Y Y, Aseev N. A., Kellerman A. C., and Reeves G D
Title: Dependence of radiation belt simulations to assumed radial diffusion rates tested for two empirical models of radial transport
Abstract: Radial diffusion is one of the dominant physical mechanisms that drives acceleration and loss of the radiation belt electrons, which makes it very important for nowcasting and forecasting space weather models. We investigate the sensitivity of the two parameterizations of the radial diffusion of Brautigam and Albert (2000) and Ozeke et al. (2014) on long-term radiation belt modeling using the Versatile Electron Radiation Belt (VERB). Following Brautigam and Albert (2000) and Ozeke et al. (2014), we first perform 1-D radial diffusion simulations. Comparison of the simulation results with observations shows that the difference between simulations with either radial diffusion parameterization is small. To take into account effects of local acceleration and loss, we perform 3-D simulations, in. . .
Date: 01/2017 Publisher: Space Weather Pages: 150 - 162 DOI: 10.1002/swe.v15.110.1002/2016SW001426 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016SW001426/full
More Details
Authors: Turner D L, O'Brien T. P., Fennell J F, Claudepierre S. G., Blake J. B., et al.
Title: Investigating the source of near-relativistic and relativistic electrons in Earth's inner radiation belt
Abstract: Using observations from NASA's Van Allen Probes, we study the role of sudden particle enhancements at low L shells (SPELLS) as a source of inner radiation belt electrons. SPELLS events are characterized by electron intensity enhancements of approximately an order of magnitude or more in less than 1 day at L < 3. During quiet and average geomagnetic conditions, the phase space density radial distributions for fixed first and second adiabatic invariants are peaked at 2 < L < 3 for electrons ranging in energy from ~50 keV to ~1 MeV, indicating that slow inward radial diffusion is not the dominant source of inner belt electrons under quiet/average conditions. During SPELLS events, the evolution of electron distributions reveals an enhancement of phase space density that can e. . .
Date: 01/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/1999JA900445 Available at: http://onlinelibrary.wiley.com/doi/10.1029/1999JA900445
More Details
2016
Authors: Xiao Fuliang, Zhou Qinghua, Su Zhenpeng, He Zhaoguo, Yang Chang, et al.
Title: Explaining occurrences of auroral kilometric radiation in Van Allen radiation belts
Abstract: Auroral kilometric radiation (AKR) is a strong terrestrial radio emission and dominates at higher latitudes because of reflection in vicinities of the source cavity and plasmapause. Recently, Van Allen Probes have observed occurrences of AKR emission in the equatorial region of Earth's radiation belts but its origin still remains an open question. Equatorial AKR can produce efficient acceleration of radiation belt electrons and is a risk to space weather. Here we report high-resolution observations during two small storm periods 4–6 April and 18–20 May 2013 and show, using a 3-D ray tracing simulation, that AKR can propagate downward all the way into the equatorial plane in the radiation belts under appropriate conditions. The simulated results can successfully explain the observed AKR. . .
Date: 12/2016 Publisher: Geophysical Research Letters Pages: 11,971 - 11,978 DOI: 10.1002/2016GL071728 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016GL071728/full
More Details
Authors: Turner D. L., O'Brien T P, Fennell J. F., Claudepierre S G, Blake J B, et al.
Title: Investigating the source of near-relativistic and relativistic electrons in Earth's inner radiation belt
Abstract: Using observations from NASA's Van Allen Probes, we study the role of sudden particle enhancements at low L-shells (SPELLS) as a source of inner radiation belt electrons. SPELLS events are characterized by electron intensity enhancements of approximately an order of magnitude or more in less than one day at L < 3. During quiet and average geomagnetic conditions, the phase space density radial distributions for fixed first and second adiabatic invariants are peaked at 2 < L < 3 for electrons ranging in energy from ~50 keV to ~1 MeV, indicating that slow inward radial diffusion is not the dominant source of inner belt electrons under quiet/average conditions. During SPELLS events, the evolution of electron distributions reveals an enhancement of phase space density that can excee. . .
Date: 12/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023600 Available at: http://doi.wiley.com/10.1002/2016JA023600
More Details
Authors: Schiller Q., Kanekal S G, Jian L. K., Li X, Jones A., et al.
Title: Prompt injections of highly relativistic electrons induced by interplanetary shocks: A statistical study of Van Allen Probes observations
Abstract: We conduct a statistical study on the sudden response of outer radiation belt electrons due to interplanetary (IP) shocks during the Van Allen Probes era, i.e., 2012 to 2015. Data from the Relativistic Electron-Proton Telescope instrument on board Van Allen Probes are used to investigate the highly relativistic electron response (E > 1.8 MeV) within the first few minutes after shock impact. We investigate the relationship of IP shock parameters, such as Mach number, with the highly relativistic electron response, including spectral properties and radial location of the shock-induced injection. We find that the driving solar wind structure of the shock does not affect occurrence for enhancement events, 25% of IP shocks are associated with prompt energization, and 14% are associated wi. . .
Date: 12/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL071628 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016GL071628/full
More Details
Authors: Malaspina David M., Jaynes Allison N., é Cory, Bortnik Jacob, Thaller Scott A., et al.
Title: The distribution of plasmaspheric hiss wave power with respect to plasmapause location
Abstract: In this work, Van Allen Probes data are used to derive terrestrial plasmaspheric hiss wave power distributions organized by (1) distance away from the plasmapause and (2) plasmapause distance from Earth. This approach is in contrast to the traditional organization of hiss wave power by L parameter and geomagnetic activity. Plasmapause-sorting reveals previously unreported and highly repeatable features of the hiss wave power distribution, including a regular spatial distribution of hiss power with respect to the plasmapause, a standoff distance between peak hiss power and the plasmapause, and frequency-dependent spatial localization of hiss. Identification and quantification of these features can provide insight into hiss generation and propagation and will facilitate improved parameteriza. . .
Date: 08/2016 Publisher: Geophysical Research Letters Pages: 7878 - 7886 DOI: 10.1002/2016GL069982 Available at: http://doi.wiley.com/10.1002/2016GL069982
More Details
Authors: Aryan Homayon, Sibeck David, Balikhin Michael, Agapitov Oleksiy, and Kletzing Craig
Title: Observation of chorus waves by the Van Allen Probes: Dependence on solar wind parameters and scale size
Abstract: Highly energetic electrons in the Earth's Van Allen radiation belts can cause serious damage to spacecraft electronic systems and affect the atmospheric composition if they precipitate into the upper atmosphere. Whistler mode chorus waves have attracted significant attention in recent decades for their crucial role in the acceleration and loss of energetic electrons that ultimately change the dynamics of the radiation belts. The distribution of these waves in the inner magnetosphere is commonly presented as a function of geomagnetic activity. However, geomagnetic indices are nonspecific parameters that are compiled from imperfectly covered ground based measurements. The present study uses wave data from the two Van Allen Probes to present the distribution of lower band chorus waves not onl. . .
Date: 08/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: 7608 - 7621 DOI: 10.1002/jgra.v121.810.1002/2016JA022775 Available at: http://doi.wiley.com/10.1002/2016JA022775
More Details
Authors: Goldstein J, Baker D N, Blake J B, De Pascuale S., Funsten H O, et al.
Title: The relationship between the plasmapause and outer belt electrons
Abstract: We quantify the spatial relationship between the plasmapause and outer belt electrons for a 5 day period, 15–20 January 2013, by comparing locations of relativistic electron flux peaks to the plasmapause. A peak-finding algorithm is applied to 1.8–7.7 MeV relativistic electron flux data. A plasmapause gradient finder is applied to wave-derived electron number densities >10 cm−3. We identify two outer belts. Outer belt 1 is a stable zone of >3 MeV electrons located 1–2 RE inside the plasmapause. Outer belt 2 is a dynamic zone of <3 MeV electrons within 0.5 RE of the moving plasmapause. Electron fluxes earthward of each belt's peak are anticorrelated with cold plasma density. Belt 1 decayed on hiss timescales prior to a disturbance on 17 January and suffered only a modest dropout, pe. . .
Date: 08/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023046 Available at: http://doi.wiley.com/10.1002/2016JA023046
More Details
Authors: Baker D N, Jaynes A. N., Turner D. L., Nakamura R, Schmid D., et al.
Title: A telescopic and microscopic examination of acceleration in the June 2015 geomagnetic storm: Magnetospheric Multiscale and Van Allen Probes study of substorm particle injection
Abstract: An active storm period in June 2015 showed that particle injection events seen sequentially by the four (Magnetospheric Multiscale) MMS spacecraft subsequently fed the enhancement of the outer radiation belt observed by Van Allen Probes mission sensors. Several episodes of significant southward interplanetary magnetic field along with a period of high solar wind speed (Vsw ≳ 500 km/s) on 22 June occurred following strong interplanetary shock wave impacts on the magnetosphere. Key events on 22 June 2015 show that the magnetosphere progressed through a sequence of energy-loading and stress-developing states until the entire system suddenly reconfigured at 19:32 UT. Energetic electrons, plasma, and magnetic fields measured by the four MMS spacecraft revealed clear dipolarization front. . .
Date: 06/2016 Publisher: Geophysical Research Letters Pages: 6051 - 6059 DOI: 10.1002/grl.v43.1210.1002/2016GL069643 Available at: http://doi.wiley.com/10.1002/2016GL069643
More Details
Authors: Ripoll J. F., Loridan V., Cunningham G. S., Reeves G D, and Shprits Y Y
Title: On the Time Needed to Reach an Equilibrium Structure of the Radiation Belts
Abstract: In this study, we complement the notion of equilibrium states of the radiation belts with a discussion on the dynamics and time needed to reach equilibrium. We solve for the equilibrium states obtained using 1D radial diffusion with recently developed hiss and chorus lifetimes at constant values of Kp = 1, 3 and 6. We find that the equilibrium states at moderately low Kp, when plotted vs L-shell (L) and energy (E), display the same interesting S-shape for the inner edge of the outer belt as recently observed by the Van Allen Probes. The S-shape is also produced as the radiation belts dynamically evolve toward the equilibrium state when initialized to simulate the buildup after a massive dropout or to simulate loss due to outward diffusion from a saturated state. Physically, this shape,. . .
Date: 06/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA022207 Available at: http://doi.wiley.com/10.1002/2015JA022207
More Details
Authors: Forsyth C., Rae I. J., Murphy K. R., Freeman M. P., Huang C.-L., et al.
Title: What effect do substorms have on the content of the radiation belts?
Abstract: Substorms are fundamental and dynamic processes in the magnetosphere, converting captured solar wind magnetic energy into plasma energy. These substorms have been suggested to be a key driver of energetic electron enhancements in the outer radiation belts. Substorms inject a keV “seed” population into the inner magnetosphere which is subsequently energized through wave-particle interactions up to relativistic energies; however, the extent to which substorms enhance the radiation belts, either directly or indirectly, has never before been quantified. In this study, we examine increases and decreases in the total radiation belt electron content (TRBEC) following substorms and geomagnetically quiet intervals. Our results show that the radiation belts are inherently lossy, shown by a negat. . .
Date: 06/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022620 Available at: http://doi.wiley.com/10.1002/2016JA022620
More Details
Authors: Ripoll J. F., Reeves G., Cunningham G., Loridan V., Denton M., et al.
Title: Reproducing the observed energy-dependent structure of Earth's electron radiation belts during storm recovery with an event-specific diffusion model
Abstract: We present dynamic simulations of energy-dependent losses in the radiation belt " slot region" and the formation of the two-belt structure for the quiet days after the March 1st storm. The simulations combine radial diffusion with a realistic scattering model, based data-driven spatially and temporally-resolved whistler mode hiss wave observations from the Van Allen Probes satellites. The simulations reproduce Van Allen Probes observations for all energies and L-shells (2 to 6) including (a) the strong energy-dependence to the radiation belt dynamics (b) an energy-dependent outer boundary to the inner zone that extends to higher L-shells at lower energies and (c) an " S-shaped" energy-dependent inner boundary to the outer zone that results from the competition between diffusive radial tran. . .
Date: 05/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL068869 Available at: http://doi.wiley.com/10.1002/2016GL068869
More Details
Authors: Chen Yue, Reeves Geoffrey D, Cunningham Gregory S., Redmon Robert J., and Henderson Michael G.
Title: Forecasting and remote sensing outer belt relativistic electrons from low Earth orbit
Abstract: This study demonstrates the feasibility and reliability of using observations from low Earth orbit (LEO) to forecast and nowcast relativistic electrons in the outer radiation belt. We first report a high cross-energy, cross-pitch-angle coherence discovered between the trapped MeV electrons and precipitating approximately hundreds (~100s) of keV electrons—observed by satellites with very different altitudes—with correlation coefficients as high as ≳ 0.85. Based upon the coherence, we then tested the feasibility of applying linear prediction filters to LEO data to predict the arrival of new MeV electrons during geomagnetic storms, as well as their evolving distributions afterward. Reliability of these predictive filters is quantified by the performance efficiency with values as high . . .
Date: 02/2016 Publisher: Geophysical Research Letters Pages: 1031 - 1038 DOI: 10.1002/2015GL067481 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2015GL067481/full
More Details
Authors: Kurita Satoshi, Miyoshi Yoshizumi, Blake Bernard, Reeves Geoffery D., and Kletzing Craig A.
Title: Relativistic electron microbursts and variations in trapped MeV electron fluxes during the 8-9 October 2012 storm: SAMPEX and Van Allen Probes observations
Abstract: It has been suggested that whistler mode chorus is responsible for both acceleration of MeV electrons and relativistic electron microbursts through resonant wave-particle interactions. Relativistic electron microbursts have been considered as an important loss mechanism of radiation belt electrons. Here we report on the observations of relativistic electron microbursts and flux variations of trapped MeV electrons during the 8–9 October 2012 storm, using the SAMPEX and Van Allen Probes satellites. Observations by the satellites show that relativistic electron microbursts correlate well with the rapid enhancement of trapped MeV electron fluxes by chorus wave-particle interactions, indicating that acceleration by chorus is much more efficient than losses by microbursts during the storm. It . . .
Date: 02/2016 Publisher: Geophysical Research Letters Pages: n/a - n/a DOI: 10.1002/2016GL068260 Available at: http://doi.wiley.com/10.1002/2016GL068260http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2016GL068260
More Details
2015
Authors: Reeves Geoffrey D, Friedel Reiner H W, Larsen Brian A., Skoug Ruth M., Funsten Herbert O., et al.
Title: Energy dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions.
Abstract: We present observations of the radiation belts from the HOPE and MagEIS particle detectors on the Van Allen Probes satellites that illustrate the energy-dependence and L-shell dependence of radiation belt enhancements and decays. We survey events in 2013 and analyze an event on March 1 in more detail. The observations show: (a) At all L-shells, lower-energy electrons are enhanced more often than higher energies; (b) Events that fill the slot region are more common at lower energies; (c) Enhancements of electrons in the inner zone are more common at lower energies; and (d) Even when events do not fully fill the slot region, enhancements at lower-energies tend to extend to lower L-shells than higher energies. During enhancement events the outer zone extends to lower L-shells at lower energie. . .
Date: 12/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021569 Available at: http://doi.wiley.com/10.1002/2015JA021569http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021569
More Details
Authors: Agapitov O. V., Artemyev A. V., Mourenas D., Mozer F S, and Krasnoselskikh V.
Title: Nonlinear local parallel acceleration of electrons through Landau trapping by oblique whistler mode waves in the outer radiation belt
Abstract: Simultaneous observations of electron velocity distributions and chorus waves by the Van Allen Probe B are analyzed to identify long-lasting (more than 6 h) signatures of electron Landau resonant interactions with oblique chorus waves in the outer radiation belt. Such Landau resonant interactions result in the trapping of ∼1–10 keV electrons and their acceleration up to 100–300 keV. This kind of process becomes important for oblique whistler mode waves having a significant electric field component along the background magnetic field. In the inhomogeneous geomagnetic field, such resonant interactions then lead to the formation of a plateau in the parallel (with respect to the geomagnetic field) velocity distribution due to trapping of electrons into the wave effective potential. We de. . .
Date: 12/2015 Publisher: Geophysical Research Letters Pages: 10,140 - 10,149 DOI: 10.1002/2015GL066887 Available at: http://doi.wiley.com/10.1002/2015GL066887http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015GL066887
More Details
Authors: Agapitov O. V., Mozer F. S., Artemyev A. V., Mourenas D., and Krasnoselskikh V. V.
Title: Wave-particle interactions in the outer radiation belts
Abstract: Data from the Van Allen Probes have provided the first extensive evidence of non-linear (as opposed to quasi-linear) wave-particle interactions in space, with the associated rapid (fraction of a bounce period) electron acceleration, to hundreds of keV by Landau resonance, in the parallel electric fields of time domain structures (TDS) and very oblique chorus waves. The experimental evidence, simulations, and theories of these processes are discussed.
Date: 12/2015 Publisher: Advances in Astronomy and Space Physics Pages: 68-74 DOI: N/A Available at: http://aasp.kiev.ua/volume5/068-074-Agapitov.pdf
More Details
Authors: Omura Yoshiharu, Miyashita Yu, Yoshikawa Masato, Summers Danny, Hikishima Mitsuru, et al.
Title: Formation process of relativistic electron flux through interaction with chorus emissions in the Earth's inner magnetosphere
Abstract: We perform test particle simulations of energetic electrons interacting with whistler mode chorus emissions. We compute trajectories of a large number of electrons forming a delta function with the same energy and equatorial pitch angle. The electrons are launched at different locations along the magnetic field line and different timings with respect to a pair of chorus emissions generated at the magnetic equator. We follow the evolution of the delta function and obtain a distribution function in energy and equatorial pitch angle, which is a numerical Green's function for one cycle of chorus wave-particle interaction. We obtain the Green's functions for the energy range 10 keV–6 MeV and all pitch angles greater than the loss cone angle. By taking the convolution integral of the Green's f. . .
Date: 11/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: 9545–9562 DOI: 10.1002/2015JA021563 Available at: http://doi.wiley.com/10.1002/2015JA021563http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021563
More Details
Authors: Xiong Ying, Xie Lun, Pu Zuyin, Fu Suiyan, Chen Lunjin, et al.
Title: Responses of relativistic electron fluxes in the outer radiation belt to geomagnetic storms
Abstract: Geomagnetic storms can either increase or decrease relativistic electron fluxes in the outer radiation belt. A statistical survey of 84 isolated storms demonstrates that geomagnetic storms preferentially decrease relativistic electron fluxes at higher energies, while flux enhancements are more common at lower energies. In about 87% of the storms, 0.3–2.5 MeV electron fluxes show an increase, whereas 2.5–14 MeV electron fluxes increase in only 35% of the storms. Superposed epoch analyses suggest that such “energy-dependent” responses of electrons preferably occur during conditions of high solar wind density which is favorable to generate magnetospheric electromagnetic ion cyclotron (EMIC) waves, and these events are associated with relatively weaker chorus activities. We have examin. . .
Date: 11/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: 9513–9523 DOI: 10.1002/2015JA021440 Available at: http://onlinelibrary.wiley.com/wol1/doi/10.1002/2015JA021440/full
More Details
Authors: Shprits Yuri Y, Kellerman Adam, Drozdov Alexander, Spense Harlan, Reeves Geoffrey, et al.
Title: Combined Convective and Diffusive Simulations: VERB-4D Comparison with March 17, 2013 Van Allen Probes Observations
Abstract: This study is focused on understanding the coupling between different electron populations in the inner magnetosphere and the various physical processes that determine evolution of electron fluxes at different energies. Observations during the March 17, 2013 storm and simulations with a newly developed Versatile Electron Radiation Belt-4D (VERB-4D) are presented. Analysis of the drift trajectories of the energetic and relativistic electrons shows that electron trajectories at transitional energies with a first invariant on the scale of ~100MeV/G may resemble ring current or relativistic electron trajectories depending on the level of geomagnetic activity. Simulations with the VERB-4D code including convection, radial diffusion, and energy diffusion are presented. Sensitivity simulations in. . .
Date: 09/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL065230 Available at: http://doi.wiley.com/10.1002/2015GL065230
More Details
Authors: Xiao Fuliang, Zhou Qinghua, He Yihua, Yang Chang, Liu Si, et al.
Title: Penetration of magnetosonic waves into the plasmasphere observed by the Van Allen Probes
Abstract: During the small storm on 14–15 April 2014, Van Allen Probe A measured a continuously distinct proton ring distribution and enhanced magnetosonic (MS) waves along its orbit outside the plasmapause. Inside the plasmasphere, strong MS waves were still present but the distinct proton ring distribution was falling steeply with distance. We adopt a sum of subtracted bi-Maxwellian components to model the observed proton ring distribution and simulate the wave trajectory and growth. MS waves at first propagate toward lower L shells outside the plasmasphere, with rapidly increasing path gains related to the continuous proton ring distribution. The waves then gradually cross the plasmapause into the deep plasmasphere, with almost unchanged path gains due to the falling proton ring distribution an. . .
Date: 09/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL065745 Available at: http://onlinelibrary.wiley.com/wol1/doi/10.1002/2015GL065745/full
More Details
Authors: Mourenas D., Artemyev A. V., and Agapitov O.V.
Title: Approximate analytical formulation of radial diffusion and whistler-induced losses from a pre-existing flux peak in the plasmasphere
Abstract: Modeling the spatio-temporal evolution of relativistic electron fluxes trapped in the Earth's radiation belts in the presence of radial diffusion coupled with wave-induced losses should address one important question: how deep can relativistic electrons penetrate into the inner magnetosphere? However, a full modelling requires extensive numerical simulations solving the comprehensive quasi-linear equations describing pitch-angle and radial diffusion of the electron distribution, making it rather difficult to perform parametric studies of the flux behavior. Here, we consider the particular situation where a localized flux peak (or storage ring) has been produced at low L < 4 during a period of strong disturbances, through a combination of chorus-induced energy diffusion (or direct injection. . .
Date: 08/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021623 Available at: http://doi.wiley.com/10.1002/2015JA021623
More Details
Authors: Turner D. L., O'Brien T P, Fennell J. F., Claudepierre S G, Blake J B, et al.
Title: The effects of geomagnetic storms on electrons in Earth's radiation belts
Abstract: We use Van Allen Probes data to investigate the responses of 10s of keV to 2 MeV electrons throughout a broad range of the radiation belts (2.5 ≤ L ≤ 6.0) during 52 geomagnetic storms from the most recent solar maximum. Electron storm-time responses are highly dependent on both electron energy and L-shell. 10s of keV electrons typically have peak fluxes in the inner belt or near-Earth plasma sheet and fill the inner magnetosphere during storm main phases. ~100 to ~600 keV electrons are enhanced in up to 87% of cases around L~3.7, and their peak flux location moves to lower L-shells during storm recovery phases. Relativistic electrons (≥~1 MeV) are nearly equally likely to produce enhancement, depletion, and no-change events in the outer belt. We also show that the L-shell of peak flu. . .
Date: 07/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL064747 Available at: http://doi.wiley.com/10.1002/2015GL064747
More Details
Authors: Blum L. W., Halford A., Millan R., Bonnell J. W., Goldstein J, et al.
Title: Observations of coincident EMIC wave activity and duskside energetic electron precipitation on 18-19 January 2013
Abstract: Electromagnetic ion cyclotron (EMIC) waves have been suggested to be a cause of radiation belt electron loss to the atmosphere. Here simultaneous, magnetically conjugate measurements are presented of EMIC wave activity, measured at geosynchronous orbit and on the ground, and energetic electron precipitation, seen by the Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) campaign, on two consecutive days in January 2013. Multiple bursts of precipitation were observed on the duskside of the magnetosphere at the end of 18 January and again late on 19 January, concurrent with particle injections, substorm activity, and enhanced magnetospheric convection. The structure, timing, and spatial extent of the waves are compared to those of the precipitation during both days to det. . .
Date: 07/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL065245 Available at: http://doi.wiley.com/10.1002/2015GL065245
More Details
Authors: Jaynes A.N., Baker D.N., Singer H.J., Rodriguez J.V., Loto'aniu T.M., et al.
Title: Source and Seed Populations for Relativistic Electrons: Their Roles in Radiation Belt Changes
Abstract: Strong enhancements of outer Van Allen belt electrons have been shown to have a clear dependence on solar wind speed and on the duration of southward interplanetary magnetic field. However, individual case study analyses also have demonstrated that many geomagnetic storms produce little in the way of outer belt enhancements and, in fact, may produce substantial losses of relativistic electrons. In this study, focused upon a key period in August-September 2014, we use GOES geostationary orbit electron flux data and Van Allen Probes particle and fields data to study the process of radiation belt electron acceleration. One particular interval, 13-22 September, initiated by a short-lived geomagnetic storm and characterized by a long period of primarily northward IMF, showed strong depletion of. . .
Date: 07/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021234 Available at: http://doi.wiley.com/10.1002/2015JA021234
More Details
Authors: Kurita Satoshi, Kadokura Akira, Miyoshi Yoshizumi, Morioka Akira, Sato Yuka, et al.
Title: Relativistic electron precipitations in association with diffuse aurora: Conjugate observation of SAMPEX and the all sky TV camera at Syowa Station
Abstract: It has been believed that whistler mode waves can cause relativistic electron precipitations. It has been also pointed out that pitch angle scattering of ~keV electrons by whistler mode waves results in diffuse auroras. Thus, it is natural to expect relativistic electron precipitations associated with diffuse auroras. Based on a conjugate observation between the SAMPEX spacecraft and the all-sky TV camera at Syowa Station, we report, for the first time, a case in which relativistic electron precipitations are associated with diffuse aurora. The SAMPEX observation shows that the precipitations of >1 MeV electrons are well accompanied with those of >150 and >400 keV electrons. This indicates that electrons in the energy range from several keV to >1 MeV precipitate into the atmosphere s. . .
Date: 06/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL064564 Available at: http://doi.wiley.com/10.1002/2015GL064564
More Details
Authors: Engebretson M. J., Posch J. L., Wygant J R, Kletzing C A, Lessard M. R., et al.
Title: Van Allen probes, NOAA, GOES, and ground observations of an intense EMIC wave event extending over 12 hours in MLT
Abstract: Although most studies of the effects of EMIC waves on Earth's outer radiation belt have focused on events in the afternoon sector in the outer plasmasphere or plume region, strong magnetospheric compressions provide an additional stimulus for EMIC wave generation across a large range of local times and L shells. We present here observations of the effects of a wave event on February 23, 2014 that extended over 8 hours in UT and over 12 hours in local time, stimulated by a gradual 4-hour rise and subsequent sharp increases in solar wind pressure. Large-amplitude linearly polarized hydrogen band EMIC waves (up to 25 nT p-p) appeared for over 4 hours at both Van Allen Probes, from late morning through local noon, when these spacecraft were outside the plasmapause, with densities ~5-20 cm-3. W. . .
Date: 06/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021227 Available at: http://doi.wiley.com/10.1002/2015JA021227
More Details
Authors: Moya Pablo. S., Pinto Víctor A., Viñas Adolfo F., Sibeck David G., Kurth William S., et al.
Title: Weak Kinetic Alfvén Waves Turbulence during the November 14th 2012 geomagnetic storm: Van Allen Probes observations
Abstract: n the dawn sector, L~ 5.5 and MLT~4-7, from 01:30 to 06:00 UT during the November 14th 2012 geomagnetic storm, both Van Allen Probes observed an alternating sequence of locally quiet and disturbed intervals with two strikingly different power fluctuation levels and magnetic field orientations: either small (~10−2 nT2) total power with strong GSM Bx and weak By, or large (~10 nT2) total power with weak Bx, and strong By and Bz components. During both kinds of intervals the fluctuations occur in the vicinity of the local ion gyro-frequencies (0.01-10 Hz) in the spacecraft frame, propagate oblique to the magnetic field, (θ ~ 60°) and have magnetic compressibility C = |δB|||/|δB⊥| ∼ 1, where δB|| (δB⊥) are the average amplitudes of the fluctuations parallel (perpendicular) to the. . .
Date: 06/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020281 Available at: http://doi.wiley.com/10.1002/2014JA020281
More Details
Authors: Artemyev A. V., Agapitov O. V., Mozer F S, and Spence H.
Title: Butterfly pitch-angle distribution of relativistic electrons in the outer radiation belt: Evidence of nonadiabatic scattering
Abstract: In this paper we investigate the scattering of relativistic electrons in the night-side outer radiation belt (around the geostationary orbit). We consider the particular case of low geomagnetic activity (|Dst|< 20 nT), quiet conditions in the solar wind, and absence of whistler wave emissions. For such conditions we find several events of Van-Allen probe observations of butterfly pitch-angle distributions of relativistic electrons (energies about 1-3 MeV). Many previous publications have described such pitch-angle distributions over a wide energy range as due to the combined effect of outward radial diffusion and magnetopause shadowing. In this paper we discuss another mechanism that produces butterfly distributions over a limited range of electron energies. We suggest that such distributi. . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020865 Available at: http://doi.wiley.com/10.1002/2014JA020865
More Details
Authors: Woodger L A, Halford A J, Millan R M, McCarthy M P, Smith D M, et al.
Title: A Summary of the BARREL Campaigns: Technique for studying electron precipitation
Abstract: The Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) studies the loss of energetic electrons from Earth's radiation belts. BARREL's array of slowly drifting balloon payloads was designed to capitalize on magnetic conjunctions with NASA's Van Allen Probes. Two campaigns were conducted from Antarctica in 2013 and 2014. During the first campaign in January and February of 2013, there were three moderate geomagnetic storms with Sym-Hmin < −40 nT. Similarly, two minor geomagnetic storms occurred during the second campaign, starting in December of 2013 and continuing on into February of 2014. Throughout the two campaigns, BARREL observed electron precipitation over a wide range of energies and exhibiting temporal structure from 100's of milliseconds to hours. Relativistic. . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020874 Available at: http://doi.wiley.com/10.1002/2014JA020874
More Details
Authors: Lessard Marc R., Lindgren Erik A., Engebretson Mark J, and Weaver Carol
Title: Solar cycle dependence of ion cyclotron wave frequencies
Abstract: Electromagnetic ion cyclotron (EMIC) waves have been studied for decades, though remain a fundamentally important topic in heliospheric physics. The connection of EMIC waves to the scattering of energetic particles from Earth's radiation belts is one ofmany topics that motivate the need for a deeper understanding of characteristics and occurrence distributions of the waves. In this study, we show that EMIC wave frequencies, as observed at Halley Station in Antarctica from 2008 through 2012, increase by approximately 60% from a minimum in 2009 to the end of 2012. Assuming that these waves are excited in the vicinity of the plasmapause, the change in Kp in going from solar minimum to near solar maximum would drive increased plasmapause erosion, potentially shifting the generation region of t. . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020791 Available at: http://doi.wiley.com/10.1002/2014JA020791
More Details
Authors: Kilpua E. K. J., Hietala H., Turner D. L., Koskinen H. E. J., Pulkkinen T. I., et al.
Title: Unraveling the drivers of the storm time radiation belt response
Abstract: We present a new framework to study the time evolution and dynamics of the outer Van Allen belt electron fluxes. The framework is entirely based on the large-scale solar wind storm drivers and their substructures. The Van Allen Probe observations, revealing the electron flux behavior throughout the outer belt, are combined with continuous, long-term (over 1.5 solar cycles) geosynchronous orbit data set from GOES and solar wind measurements A superposed epoch analysis, where we normalize the timescales for each substructure (sheath, ejecta, and interface region) allows us to avoid smearing effects and to distinguish the electron flux evolution during various driver structures. We show that the radiation belt response is not random: The electron flux variations are determined by the combined. . .
Date: 04/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL063542 Available at: http://doi.wiley.com/10.1002/2015GL063542
More Details
Authors: Neal Jason J., Rodger Craig J., Clilverd Mark A., Thomson Neil R., Raita Tero, et al.
Title: Long-term determination of energetic electron precipitation into the atmosphere from AARDDVARK subionospheric VLF observations
Abstract: We analyze observations of subionospherically propagating very low frequency (VLF) radio waves to determine outer radiation belt energetic electron precipitation (EEP) flux magnitudes. The radio wave receiver in Sodankylä, Finland (Sodankylä Geophysical Observatory) observes signals from the transmitter with call sign NAA (Cutler, Maine). The receiver is part of the Antarctic-Arctic Radiation-belt Dynamic Deposition VLF Atmospheric Research Konsortia (AARDDVARK). We use a near-continuous data set spanning November 2004 until December 2013 to determine the long time period EEP variations. We determine quiet day curves over the entire period and use these to identify propagation disturbances caused by EEP. Long Wave Propagation Code radio wave propagation modeling is used to estimate the p. . .
Date: 03/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020689 Available at: http://doi.wiley.com/10.1002/2014JA020689
More Details
Authors: Brito T, Hudson M K, Kress B., Paral J., Halford A., et al.
Title: Simulation of ULF wave modulated radiation belt electron precipitation during the 17 March 2013 storm
Abstract: Balloon-borne instruments detecting radiation belt precipitation frequently observe oscillations in the mHz frequency range. Balloons measuring electron precipitation near the poles in the 100 keV to 2.5 MeV energy range, including the MAXIS, MINIS, and most recently the BARREL balloon experiments, have observed this modulation at ULF wave frequencies [e.g. Foat et al., 1998; Millan et al., 2002; Millan, 2011]. Although ULF waves in the magnetosphere are seldom directly linked to increases in electron precipitation since their oscillation periods are much larger than the gyroperiod and the bounce period of radiation belt electrons, test particle simulations show that this interaction is possible [Brito et al., 2012]. 3D simulations of radiation belt electrons were performed to investigate . . .
Date: 03/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020838 Available at: http://doi.wiley.com/10.1002/2014JA020838
More Details
Authors: Hartley D. P., Chen Y., Kletzing C A, Denton M. H., and Kurth W S
Title: Applying the cold plasma dispersion relation to whistler mode chorus waves: EMFISIS wave measurements from the Van Allen Probes
Abstract: Most theoretical wave models require the power in the wave magnetic field in order to determine the effect of chorus waves on radiation belt electrons. However, researchers typically use the cold plasma dispersion relation to approximate the magnetic wave power when only electric field data are available. In this study, the validity of using the cold plasma dispersion relation in this context is tested using Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) observations of both the electric and magnetic spectral intensities in the chorus wave band (0.1–0.9 fce). Results from this study indicate that the calculated wave intensity is least accurate during periods of enhanced wave activity. For observed wave intensities >10−3 nT2, using the cold plasma dispersi. . .
Date: 02/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020808 Available at: http://doi.wiley.com/10.1002/2014JA020808
More Details
Authors: Turner D. L., Claudepierre S G, Fennell J. F., O'Brien T P, Blake J B, et al.
Title: Energetic electron injections deep into the inner magnetosphere associated with substorm activity
Abstract: From a survey of the first nightside season of NASA's Van Allen Probes mission (Dec/2012 – Sep/2013), 47 energetic (10s to 100s of keV) electron injection events were found at L-shells ≤ 4, all of which are deeper than any previously reported substorm-related injections. Preliminary details from these events are presented, including how: all occurred shortly after dipolarization signatures and injections were observed at higher L-shells; the deepest observed injection was at L~2.5; and, surprisingly, L≤4 injections are limited in energy to ≤250 keV. We present a detailed case study of one example event revealing that the injection of electrons down to L~3.5 was different from injections observed at higher L and likely resulted from drift resonance with a fast magnetosonic wave in t. . .
Date: 02/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL063225 Available at: http://doi.wiley.com/10.1002/2015GL063225
More Details
Authors: Hrbáčková Z., Santolik O, Němec F., Macúšová E., and Cornilleau-Wehrlin N.
Title: Systematic analysis of occurrence of equatorial noise emissions using 10 years of data from the Cluster mission
Abstract: We report results of a systematic analysis of equatorial noise (EN) emissions which are also known as fast magnetosonic waves. EN occurs in the vicinity of the geomagnetic equator at frequencies between the local proton cyclotron frequency and the lower hybrid frequency. Our analysis is based on the data collected by the Spatio-Temporal Analysis of Field Fluctuations–Spectrum Analyzer instruments on board the four Cluster spacecraft. The data set covers the period from January 2001 to December 2010. We have developed selection criteria for the visual identification of these emissions, and we have compiled a list of more than 2000 events identified during the analyzed time period. The evolution of the Cluster orbit enables us to investigate a large range of McIlwain's parameter from about. . .
Date: 02/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020268 Available at: http://doi.wiley.com/10.1002/2014JA020268
More Details
2014
Authors: Jaynes A. N., Li X, Schiller Q. G., Blum L. W., Tu W., et al.
Title: Evolution of relativistic outer belt electrons during an extended quiescent period
Abstract: To effectively study steady loss due to hiss-driven precipitation of relativistic electrons in the outer radiation belt, it is useful to isolate this loss by studying a time of relatively quiet geomagnetic activity. We present a case of initial enhancement and slow, steady decay of 700 keV - 2 MeV electron populations in the outer radiation belt during an extended quiescent period from ~15 December 2012 - 13 January 2013. We incorporate particle measurements from a constellation of satellites, including the Colorado Student Space Weather Experiment (CSSWE) CubeSat, the Van Allen Probes twin spacecraft, and THEMIS, to understand the evolution of the electron populations across pitch angle and energy. Additional data from calculated phase space density (PSD), as well as hiss and chorus w. . .
Date: 12/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020125 Available at: http://doi.wiley.com/10.1002/2014JA020125
More Details
Authors: Kellerman A. C., Shprits Y Y, Makarevich R. A., Spanswick E., Donovan E., et al.
Title: Characterization of the energy-dependent response of riometer absorption
Abstract: Ground based riometers provide an inexpensive means to continuously remote sense the precipitation of electrons in the dynamic auroral region of Earth's ionosphere. The energy-dependent relationship between riometer absorption and precipitating electrons is thus of great importance for understanding the loss of electrons from the Earth's magnetosphere. In this study, statistical and event-based analyses are applied to determine the energy of electrons to which riometers chiefly respond. Time-lagged correlation analysis of trapped to precipitating fluxes shows that daily averaged absorption best correlates with ~ 60 keV trapped electron flux at zero-time lag, although large variability is observed across different phases of the solar cycle. High-time resolution statistical cross-correlati. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020027 Available at: http://doi.wiley.com/10.1002/2014JA020027
More Details
Authors: Degeling A W, Rankin R, and Zong Q.-G.
Title: Modeling radiation belt electron acceleration by ULF fast mode waves, launched by solar wind dynamic pressure fluctuations
Abstract: We investigate the magnetospheric MHD and energetic electron response to a Storm Sudden Commencement (SSC) and subsequent magnetopause buffeting, focusing on an interval following an SSC event on 25 November 2001. We find that the electron flux signatures observed by LANL, Cluster, and GOES spacecraft during this event can largely be reproduced using an advective kinetic model for electron phase space density, using externally prescribed electromagnetic field inputs, (herein described as a “test-kinetic model”) with electromagnetic field inputs provided by a 2-D linear ideal MHD model for ULF waves. In particular, we find modulations in electron flux phase shifted by 90° from the local azimuthal ULF wave electric field (Eφ) and a net enhancement in electron flux after 1.5 h for energ. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2013JA019672 Available at: http://doi.wiley.com/10.1002/2013JA019672
More Details
Authors: Zanetti L. J., Mauk B H, Fox N.J., Barnes R.J., Weiss M, et al.
Title: The Evolving Space Weather System - Van Allen Probes Contribution
Abstract: The overarching goal and purpose of the study of space weather is clear - to understand and address the issues caused by solar disturbances on humans and technological systems. Space weather has evolved in the past few decades from a collection of concerned agencies and researchers to a critical function of the National Weather Service of NOAA. The general effects have also evolved from the well-known telegraph disruptions of the mid-1800’s to modern day disturbances of the electric power grid, communications and navigation, human spaceflight and spacecraft systems. The last two items in this list, and specifically the effects of penetrating radiation, were the impetus for the space weather broadcast implemented on NASA’s Van Allen Probes’ twin pair of satellites, launched in August . . .
Date: 10/2014 Publisher: Space Weather DOI: 10.1002/2014SW001108 Available at: http://doi.wiley.com/10.1002/2014SW001108
More Details
Authors: Pakhotin I. P., Drozdov A. Y., Shprits Y Y, Boynton R. J., Subbotin D. A., et al.
Title: Simulation of high-energy radiation belt electron fluxes using NARMAX-VERB coupled codes
Abstract: This study presents a fusion of data-driven and physics-driven methodologies of energetic electron flux forecasting in the outer radiation belt. Data-driven NARMAX (Nonlinear AutoRegressive Moving Averages with eXogenous inputs) model predictions for geosynchronous orbit fluxes have been used as an outer boundary condition to drive the physics-based Versatile Electron Radiation Belt (VERB) code, to simulate energetic electron fluxes in the outer radiation belt environment. The coupled system has been tested for three extended time periods totalling several weeks of observations. The time periods involved periods of quiet, moderate, and strong geomagnetic activity and captured a range of dynamics typical of the radiation belts. The model has successfully simulated energetic electron fluxes . . .
Date: 10/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020238 Available at: http://doi.wiley.com/10.1002/2014JA020238
More Details

Pages