Biblio

Found 2 results
Filters: Keyword is magnetopause loss  [Clear All Filters]
2018
Authors: Sorathia K. A., Ukhorskiy A Y, Merkin V. G., Fennell J. F., and Claudepierre S G
Title: Modeling the Depletion and Recovery of the Outer Radiation Belt During a Geomagnetic Storm: Combined MHD and Test Particle Simulations
Abstract: During geomagnetic storms the intensities of the outer radiation belt electron population can exhibit dramatic variability. Deep depletions in intensity during the main phase are followed by increases during the recovery phase, often to levels that significantly exceed their pre‐storm values. To study these processes, we simulate the evolution of the outer radiation belt during the 17 March 2013 geomagnetic storm using our newly‐developed radiation belt model (CHIMP) based on test particle and coupled 3D ring current and global MHD simulations, and driven solely with solar wind and F10.7 flux data. Our approach differs from previous work in that we use MHD information to identify regions of strong, bursty, and azimuthally localized Earthward convection in the magnetotail where test. . .
Date: 06/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025506 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025506
More Details
2015
Authors: Ukhorskiy A Y, Sitnov M I, Millan R M, Kress B T, Fennell J. F., et al.
Title: Global Storm-Time Depletion of the Outer Electron Belt
Abstract: The outer radiation belt consists of relativistic (>0.5 MeV) electrons trapped on closed trajectories around Earth where the magnetic field is nearly dipolar. During increased geomagnetic activity, electron intensities in the belt can vary by ordersof magnitude at different spatial and temporal scale. The main phase of geomagnetic storms often produces deep depletions of electron intensities over broad regions of the outer belt. Previous studies identified three possible processes that can contribute to the main-phase depletions: adiabatic inflation of electron drift orbits caused by the ring current growth, electron loss into the atmosphere, and electron escape through the magnetopause boundary. In this paper we investigate the relative importance of the adiabatic effect and magnetopause . . .
Date: 03/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020645 Available at: http://doi.wiley.com/10.1002/2014JA020645
More Details