Biblio

Found 3 results
Filters: Keyword is VERB code  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
D
Authors: Drozdov A. Y., Shprits Y Y, Orlova K.G., Kellerman A. C., Subbotin D. A., et al.
Title: Energetic, relativistic and ultra-relativistic electrons: Comparison of long-term VERB code simulations with Van Allen Probes measurements
Abstract: In this study, we compare long-term simulations performed by the Versatile Electron Radiation Belt (VERB) code with observations from the MagEIS and REPT instruments on the Van Allen Probes satellites. The model takes into account radial, energy, pitch-angle and mixed diffusion, losses into the atmosphere, and magnetopause shadowing. We consider the energetic (>100 keV), relativistic (~0.5-1 MeV) and ultra-relativistic (>2 MeV) electrons. One year of relativistic electron measurements (μ=700 MeV/G) from October 1, 2012 to October 1, 2013, are well reproduced by the simulation during varying levels of geomagnetic activity. However, for ultra-relativistic energies (μ=3500 MeV/G), the VERB code simulation overestimates electron fluxes and Phase Space Density. These results indicate that an . . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020637 Available at: http://doi.wiley.com/10.1002/2014JA020637
More Details
Authors: Drozdov A. Y., Shprits Y Y, Usanova M. E., Aseev N. A., Kellerman A. C., et al.
Title: EMIC wave parameterization in the long-term VERB code simulation
Abstract: Electromagnetic ion cyclotron (EMIC) waves play an important role in the dynamics of ultrarelativistic electron population in the radiation belts. However, as EMIC waves are very sporadic, developing a parameterization of such wave properties is a challenging task. Currently, there are no dynamic, activity-dependent models of EMIC waves that can be used in the long-term (several months) simulations, which makes the quantitative modeling of the radiation belt dynamics incomplete. In this study, we investigate Kp, Dst, and AE indices, solar wind speed, and dynamic pressure as possible parameters of EMIC wave presence. The EMIC waves are included in the long-term simulations (1 year, including different geomagnetic activity) performed with the Versatile Electron Radiation Belt code, and we co. . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024389 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024389/full
More Details
Authors: Drozdov A. Y., Shprits Y Y, Aseev N. A., Kellerman A. C., and Reeves G D
Title: Dependence of radiation belt simulations to assumed radial diffusion rates tested for two empirical models of radial transport
Abstract: Radial diffusion is one of the dominant physical mechanisms that drives acceleration and loss of the radiation belt electrons, which makes it very important for nowcasting and forecasting space weather models. We investigate the sensitivity of the two parameterizations of the radial diffusion of Brautigam and Albert (2000) and Ozeke et al. (2014) on long-term radiation belt modeling using the Versatile Electron Radiation Belt (VERB). Following Brautigam and Albert (2000) and Ozeke et al. (2014), we first perform 1-D radial diffusion simulations. Comparison of the simulation results with observations shows that the difference between simulations with either radial diffusion parameterization is small. To take into account effects of local acceleration and loss, we perform 3-D simulations, in. . .
Date: 01/2017 Publisher: Space Weather Pages: 150 - 162 DOI: 10.1002/swe.v15.110.1002/2016SW001426 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016SW001426/full
More Details