Biblio

Found 8 results
Filters: Keyword is VLF waves  [Clear All Filters]
2018
Authors: Bingham S. T., Mouikis C. G., Kistler L. M., Boyd A. J., Paulson K., et al.
Title: The outer radiation belt response to the storm time development of seed electrons and chorus wave activity during CME and CIR storms
Abstract: Gyroresonant wave‐particle interactions with very low frequency whistler mode chorus waves can accelerate subrelativistic seed electrons (hundreds of keV) to relativistic energies in the outer radiation belt during geomagnetic storms. In this study, we conduct a superposed epoch analysis of the chorus wave activity, the seed electron development, and the outer radiation belt electron response between L* = 2.5 and 5.5, for 25 coronal mass ejection and 35 corotating interaction region storms using Van Allen Probes observations. Electron data from the Magnetic Electron Ion Spectrometer and Relativistic Electron Proton Telescope instruments are used to monitor the storm‐phase development of the seed and relativistic electrons, and magnetic field measurements from the Electric and Magnetic . . .
Date: 12/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025963 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025963
More Details
2017
Authors: Agapitov O., Blum L. W., Mozer F S, Bonnell J. W., and Wygant J
Title: Chorus whistler wave source scales as determined from multipoint Van Allen Probe measurements
Abstract: Whistler mode chorus waves are particularly important in outer radiation belt dynamics due to their key role in controlling the acceleration and scattering of electrons over a very wide energy range. The key parameters for both nonlinear and quasi-linear treatment of wave-particle interactions are the temporal and spatial scales of the wave source region and coherence of the wave field perturbations. Neither the source scale nor the coherence scale is well established experimentally, mostly because of a lack of multipoint VLF waveform measurements. We present an unprecedentedly long interval of coordinated VLF waveform measurements (sampled at 16384 s−1) aboard the two Van Allen Probes spacecraft—9 h (0800–1200 UT and 1700–2200 UT) during two consecutive apogees on 15 July . . .
Date: 03/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL072701 Available at: http://doi.wiley.com/10.1002/2017GL072701
More Details
Authors: Aryan Homayon, Sibeck David G., Bin Kang Suk-, Balikhin Michael A., Fok Mei-Ching, et al.
Title: CIMI simulations with newly developed multi-parameter chorus and plasmaspheric hiss wave models
Abstract: Numerical simulation studies of the Earth's radiation belts are important to understand the acceleration and loss of energetic electrons. The Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model considers the effects of the ring current and plasmasphere on the radiation belts to obtain plausible results. The CIMI model incorporates pitch angle, energy, and cross diffusion of electrons, due to chorus and plasmaspheric hiss waves. These parameters are calculated using statistical wave distribution models of chorus and plasmaspheric hiss amplitudes. However, currently these wave distribution models are based only on a single parameter, geomagnetic index (AE), and could potentially underestimate the wave amplitudes. Here we incorporate recently developed multi-parameter chorus and plasmas. . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024159 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024351/full
More Details
Authors: Ma Qianli, Mourenas Didier, Li Wen, Artemyev Anton, and Thorne Richard M
Title: VLF waves from ground-based transmitters observed by the Van Allen Probes: Statistical model and effects on plasmaspheric electrons
Abstract: Whistler-mode Very Low Frequency (VLF) waves from powerful ground-based transmitters can resonantly scatter energetic plasmaspheric electrons and precipitate them into the atmosphere. A comprehensive 4-year statistics of Van Allen Probes measurements is carried out to assess their consequences on the dynamics of the inner radiation belt and slot region. Statistical models of the measured wave electric field power and of the inferred full wave magnetic amplitude are provided as a function of L, magnetic local time, season, and Kp over L=1-3, revealing the localization of VLF wave intensity and its variation with geomagnetic activity over 2012-2016. Since this VLF wave model can be directly used together with existing hiss and lightning-generated wave models in radiation belt simulation code. . .
Date: 06/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL073885 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL073885/full
More Details
2015
Authors: Simms Laura E., Engebretson Mark J, Smith A. J., Clilverd Mark, Pilipenko Viacheslav, et al.
Title: Analysis of the effectiveness of ground-based VLF wave observations for predicting or nowcasting relativistic electron flux at geostationary orbit
Abstract: Poststorm relativistic electron flux enhancement at geosynchronous orbit has shown correlation with very low frequency (VLF) waves measured by satellite in situ. However, our previous study found little correlation between electron flux and VLF measured by a ground-based instrument at Halley, Antarctica. Here we explore several possible explanations for this low correlation. Using 220 storms (1992–2002), our previous work developed a predictive model of the poststorm flux at geosynchronous orbit based on explanatory variables measured a day or two before the flux increase. In a nowcast model, we use averages of variables from the time period when flux is rising during the recovery phase of geomagnetic storms and limit the VLF (1.0 kHz) measure to the dawn period at Halley (09:00–12:0. . .
Date: 03/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: 2052 - 2060 DOI: 10.1002/2014JA020337 Available at: http://doi.wiley.com/10.1002/2014JA020337
More Details
Authors: Jaynes A. N., Lessard M. R., Takahashi K., Ali A. F., Malaspina D. M., et al.
Title: Correlated Pc4-5 ULF waves, whistler-mode chorus and pulsating aurora observed by the Van Allen Probes and ground-based systems
Abstract: Theory and observations have linked equatorial VLF waves with pulsating aurora for decades, invoking the process of pitch-angle scattering of 10's keV electrons in the equatorial magnetosphere. Recently published satellite studies have strengthened this argument, by showing strong correlation between pulsating auroral patches and both lower-band chorus and 10's keV electron modulation in the vicinity of geosynchronous orbit. Additionally, a previous link has been made between Pc4-5 compressional pulsations and modulation of whistler-mode chorus using THEMIS. In the current study, we present simultaneous in-situ observations of structured chorus waves and an apparent field line resonance (in the Pc4-5 range) as a result of a substorm injection, observed by Van Allen Probes, along with groun. . .
Date: 07/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021380 Available at: http://doi.wiley.com/10.1002/2015JA021380
More Details
Authors: Titova E. E., Kozelov B. V., Demekhov A. G., Manninen J., Santolik O, et al.
Title: Identification of the source of quasiperiodic VLF emissions using ground-based and Van Allen Probes satellite observations
Abstract: We report on simultaneous spacecraft and ground-based observations of quasiperiodic VLF emissions and related energetic-electron dynamics. Quasiperiodic emissions in the frequency range 2–6 kHz were observed during a substorm on 25 January 2013 by Van Allen Probe-A and a ground-based station in the Northern Finland. The spacecraft detected the VLF signals near the geomagnetic equator in the night sector at L = 3.0–4.2 when it was inside the plasmasphere. During the satellite motion toward higher latitudes, the time interval between quasiperiodic elements decreased from 6 min to 3 min. We find one-to-one correspondence between the quasiperiodic elements detected by Van Allen Probe-A and on the ground, which indicates the temporal nature of the observed variation in the time in. . .
Date: 08/2015 Publisher: Geophysical Research Letters Pages: 6137 - 6145 DOI: 10.1002/grl.v42.1510.1002/2015GL064911 Available at: http://doi.wiley.com/10.1002/2015GL064911
More Details
Authors: Jaynes A.N., Baker D.N., Singer H.J., Rodriguez J.V., Loto'aniu T.M., et al.
Title: Source and Seed Populations for Relativistic Electrons: Their Roles in Radiation Belt Changes
Abstract: Strong enhancements of outer Van Allen belt electrons have been shown to have a clear dependence on solar wind speed and on the duration of southward interplanetary magnetic field. However, individual case study analyses also have demonstrated that many geomagnetic storms produce little in the way of outer belt enhancements and, in fact, may produce substantial losses of relativistic electrons. In this study, focused upon a key period in August-September 2014, we use GOES geostationary orbit electron flux data and Van Allen Probes particle and fields data to study the process of radiation belt electron acceleration. One particular interval, 13-22 September, initiated by a short-lived geomagnetic storm and characterized by a long period of primarily northward IMF, showed strong depletion of. . .
Date: 07/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021234 Available at: http://doi.wiley.com/10.1002/2015JA021234
More Details