Biblio

Found 7 results
Filters: Keyword is injection  [Clear All Filters]
2018
Authors: Ohtani S, Motoba T., Gkioulidou M., Takahashi K., and Singer H J
Title: Spatial Development of the Dipolarization Region in the Inner Magnetosphere
Abstract: The present study examines dipolarization events observed by the Van Allen Probes within 5.8 RE from Earth. It is found that the probability of occurrence is significantly higher in the dusk‐to‐midnight sector than in the midnight‐to‐dawn sector, and it deceases sharply earthward. A comparison with observations made at nearby satellites shows that dipolarization signatures are often highly correlated (c.c. > 0.8) within 1 hr in MLT and 1 RE in RXY, and the dipolarization region expands earthward and westward in the dusk‐to‐midnight sector. The westward expansion velocity is estimated at 0.4 hr (in MLT) per minute, or 60 km/s, which is consistent with the previously reported result for geosynchronous dipolarization. The earthward expansion is apparently less systematic than the . . .
Date: 06/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025443 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025443
More Details
2017
Authors: Vasko I. Y., Agapitov O. V., Mozer F S, Artemyev A. V., Krasnoselskikh V. V., et al.
Title: Diffusive scattering of electrons by electron holes around injection fronts
Abstract: Van Allen Probes have detected nonlinear electrostatic spikes around injection fronts in the outer radiation belt. These spikes include electron holes (EH), double layers, and more complicated solitary waves. We show that EHs can efficiently scatter electrons due to their substantial transverse electric fields. Although the electron scattering driven by EHs is diffusive, it cannot be evaluated via the standard quasi-linear theory. We derive analytical formulas describing local electron scattering by a single EH and verify them via test particle simulations. We show that the most efficiently scattered are gyroresonant electrons (crossing EH on a time scale comparable to the local electron gyroperiod). We compute bounce-averaged diffusion coefficients and demonstrate their dependence on the . . .
Date: 03/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023337 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023337/full
More Details
Authors: Chen X.-R., Zong Q.-G., Zhou X.-Z., Blake Bernard, Wygant J. R., et al.
Title: Van Allen Probes observation of a 360° phase shift in the flux modulation of injected electrons by ULF waves
Abstract: We present Van Allen Probe observation of drift-resonance interaction between energetic electrons and ultralow frequency (ULF) waves on 29 October 2013. Oscillations in electron flux were observed at the period of ∼450 s, which is also the dominant period of the observed ULF magnetic pulsations. The phase shift of the electron fluxes (∼50 to 150 keV) across the estimated resonant energy (∼104 keV) is ∼360°. This phase relationship is different from the characteristic 180° phase shift as expected from the drift-resonance theory. We speculate that the additional 180° phase difference arises from the inversion of electron phase space density (PSD) gradient, which in turn is caused by the drift motion of the substorm injected electrons. This PSD gradient adjusts the characteristic p. . .
Date: 02/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL071252 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016GL071252/full
More Details
2016
Authors: Vasko I. Y., Agapitov O. V., Mozer F S, Artemyev A. V., Drake J. F., et al.
Title: Electron holes in the outer radiation belt: Characteristics and their role in electron energization
Abstract: Van Allen Probes have detected electron holes (EHs) around injection fronts in the outer radiation belt. Presumably generated near equator, EHs propagate to higher latitudes potentially resulting in energization of electrons trapped within EHs. This process has been recently shown to provide electrons with energies up to several tens of keV and requires EH propagation up to rather high latitudes. We have analyzed more than 100 EHs observed around a particular injection to determine their kinetic structure and potential energy sources supporting the energization of trapped electrons. EHs propagate with velocities from 1000 to 20,000 km/s (a few times larger than the thermal velocity of the coldest background electron population). The parallel scale of observed EHs is from 0.3 to 3 km that i. . .
Date: 12/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023083 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023083/full
More Details
Authors: Califf S., Li X, Wolf R. A., Zhao H., Jaynes A. N., et al.
Title: Large-amplitude electric fields in the inner magnetosphere: Van Allen Probes observations of subauroral polarization streams
Abstract: The subauroral polarization stream (SAPS) is an important magnetosphere-ionosphere (MI) coupling phenomenon that impacts a range of particle populations in the inner magnetosphere. SAPS studies often emphasize ionospheric signatures of fast westward flows, but the equatorial magnetosphere is also affected through strong radial electric fields in the dusk sector. This study focuses on a period of steady southward interplanetary magnetic field (IMF) during the 29 June 2013 geomagnetic storm where the Van Allen Probes observe a region of intense electric fields near the plasmapause over multiple consecutive outbound duskside passes. We show that the large-amplitude electric fields near the equatorial plane are consistent with SAPS by investigating the relationship between plasma sheet ion and. . .
Date: 05/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA022252 Available at: http://doi.wiley.com/10.1002/2015JA022252
More Details
Authors: Chen X.-R., Zong Q.-G., Zhou X.-Z., Blake Bernard, Wygant John R., et al.
Title: Van Allen Probes observation of a 360° phase shift in the flux modulation of injected electrons by ULF waves
Abstract: We present Van Allen Probe observation of drift-resonance interaction between energetic electrons and ultra-low frequency (ULF) waves on October 29, 2013. Oscillations in electron flux were observed at the period of ∼450s, which is also the dominant period of the observed ULF magnetic pulsations. The phase shift of the electron fluxes (∼50 to 150 keV) across the estimated resonant energy (∼104 keV) is ∼360°. This phase relationship is different from the characteristic 180° phase shift as expected from the drift-resonance theory. We speculate that the additional 180° phase difference arises from the inversion of electron phase space density (PSD) gradient, which in turn is caused by the drift motion of the substorm injected electrons. This PSD gradient adjusts the characteristic . . .
Date: 12/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL071252 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016GL071252/full
More Details
2015
Authors: Malaspina David M., Wygant John R., Ergun Robert E., Reeves Geoff D., Skoug Ruth M., et al.
Title: Electric field structures and waves at plasma boundaries in the inner magnetosphere
Abstract: Recent observations by the Van Allen Probes spacecraft have demonstrated that a variety of electric field structures and nonlinear waves frequently occur in the inner terrestrial magnetosphere, including phase space holes, kinetic field line resonances, nonlinear whistler mode waves, and several types of double layer. However, it is unclear whether such structures and waves have a significant impact on the dynamics of the inner magnetosphere, including the radiation belts and ring current. To make progress toward quantifying their importance, this study statistically evaluates the correlation of such structures and waves with plasma boundaries. A strong correlation is found. These statistical results, combined with observations of electric field activity at propagating plasma boundaries, a. . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021137 Available at: http://doi.wiley.com/10.1002/2015JA021137
More Details