Biblio

Found 3 results
Filters: Keyword is diffuse aurora  [Clear All Filters]
2019
Authors: Chen Margaret W., Lemon Colby L., Hecht James, Sazykin Stanislav, Wolf Richard A., et al.
Title: Diffuse Auroral Electron and Ion Precipitation Effects on RCM‐E Comparisons with Satellite Data During the March 17, 2013 Storm
Abstract: Effects of scattering of electrons from whistler chorus waves and of ions due to field line curvature on diffuse precipitating particle fluxes and ionospheric conductance during the large 17 March 2013 storm are examined using the self‐consistent Rice Convection Model Equilibrium (RCM‐E) model. Electrons are found to dominate the diffuse precipitating particle integrated energy flux, with large fluxes from ~21:00 magnetic local time (MLT) eastward to ~11:00 MLT during the storm main phase. Simulated proton and oxygen ion precipitation due to field line curvature scattering is sporadic and localized, occurring where model magnetic field lines are significantly stretched on the night side at equatorial geocentric radial distances r0 ≳8 RE and/or at r0 ~5.5 to 6.5 RE from dusk to midnig. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026545 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026545
More Details
2015
Authors: Khazanov G. V., Tripathi A. K., Sibeck D., Himwich E., Glocer A., et al.
Title: Electron distribution function formation in regions of diffuse aurora
Abstract: The precipitation of high-energy magnetospheric electrons (E ∼ 600 eV–10 KeV) in the diffuse aurora contributes significant energy flux into the Earth's ionosphere. To fully understand the formation of this flux at the upper ionospheric boundary, ∼700–800 km, it is important to consider the coupled ionosphere-magnetosphere system. In the diffuse aurora, precipitating electrons initially injected from the plasma sheet via wave-particle interaction processes degrade in the atmosphere toward lower energies and produce secondary electrons via impact ionization of the neutral atmosphere. These precipitating electrons can be additionally reflected upward from the two conjugate ionospheres, leading to a series of multiple reflections through the magnetosphere. These reflections greatly in. . .
Date: 11/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: 9891–9915 DOI: 10.1002/2015JA021728 Available at: http://doi.wiley.com/10.1002/2015JA021728http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021728
More Details
Authors: Kurita Satoshi, Kadokura Akira, Miyoshi Yoshizumi, Morioka Akira, Sato Yuka, et al.
Title: Relativistic electron precipitations in association with diffuse aurora: Conjugate observation of SAMPEX and the all sky TV camera at Syowa Station
Abstract: It has been believed that whistler mode waves can cause relativistic electron precipitations. It has been also pointed out that pitch angle scattering of ~keV electrons by whistler mode waves results in diffuse auroras. Thus, it is natural to expect relativistic electron precipitations associated with diffuse auroras. Based on a conjugate observation between the SAMPEX spacecraft and the all-sky TV camera at Syowa Station, we report, for the first time, a case in which relativistic electron precipitations are associated with diffuse aurora. The SAMPEX observation shows that the precipitations of >1 MeV electrons are well accompanied with those of >150 and >400 keV electrons. This indicates that electrons in the energy range from several keV to >1 MeV precipitate into the atmosphere s. . .
Date: 06/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL064564 Available at: http://doi.wiley.com/10.1002/2015GL064564
More Details