Biblio

Found 4 results
Filters: Keyword is SAPS  [Clear All Filters]
2018
Authors: Lejosne ène, Kunduri B. S. R., Mozer F S, and Turner D. L.
Title: Energetic electron injections deep into the inner magnetosphere: a result of the subauroral polarization stream (SAPS) potential drop
Abstract: It has been reported that the dynamics of energetic (tens to hundreds of keV) electrons and ions is inconsistent with the theoretical picture in which the large‐scale electric field is a superposition of corotation and convection electric fields. Combining one year of measurements by the Super Dual Auroral Radar Network, DMSP F‐18 and the Van Allen Probes, we show that subauroral polarization streams are observed when energetic electrons have penetrated below L = 4. Outside the plasmasphere in the premidnight region, potential energy is subtracted from the total energy of ions and added to the total energy of electrons during SAPS onset. This potential energy is converted into radial motion as the energetic particles drift around Earth and leave the SAPS azimuthal sector. As a result, . . .
Date: 04/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL077969 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL077969
More Details
2017
Authors: Lejosne ène, and Mozer F S
Title: Sub-Auroral Polarization Stream (SAPS) duration as determined from Van Allen Probe successive electric drift measurements
Abstract: We examine a characteristic feature of the magnetosphere-ionosphere coupling, namely, the persistent and latitudinally narrow bands of rapid westward ion drifts called the Sub-Auroral Polarization Streams (SAPS). Despite countless works on SAPS, information relative to their durations is lacking. Here, we report on the first statistical analysis of more than 200 near-equatorial SAPS observations based on more than two years of Van Allen Probe electric drift measurements. First, we present results relative to SAPS radial locations and amplitudes. Then, we introduce two different ways to estimate SAPS durations. In both cases, SAPS activity is estimated to last for about nine hours on average. However, our estimates for SAPS duration are limited either by the relatively long orbital periods . . .
Date: 08/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL074985 Available at: http://http://onlinelibrary.wiley.com/doi/10.1002/2017GL074985/full
More Details
2016
Authors: Califf S., Li X, Wolf R. A., Zhao H., Jaynes A. N., et al.
Title: Large-amplitude electric fields in the inner magnetosphere: Van Allen Probes observations of subauroral polarization streams
Abstract: The subauroral polarization stream (SAPS) is an important magnetosphere-ionosphere (MI) coupling phenomenon that impacts a range of particle populations in the inner magnetosphere. SAPS studies often emphasize ionospheric signatures of fast westward flows, but the equatorial magnetosphere is also affected through strong radial electric fields in the dusk sector. This study focuses on a period of steady southward interplanetary magnetic field (IMF) during the 29 June 2013 geomagnetic storm where the Van Allen Probes observe a region of intense electric fields near the plasmapause over multiple consecutive outbound duskside passes. We show that the large-amplitude electric fields near the equatorial plane are consistent with SAPS by investigating the relationship between plasma sheet ion and. . .
Date: 05/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA022252 Available at: http://doi.wiley.com/10.1002/2015JA022252
More Details
2015
Authors: Lyons L R, Nishimura Y., Gallardo-Lacourt B., Nicolls M. J., Chen S., et al.
Title: Azimuthal flow bursts in the Inner Plasma Sheet and Possible Connection with SAPS and Plasma Sheet Earthward Flow Bursts
Abstract: We have combined radar observations and auroral images obtained during the PFISR Ion Neutral Observations in the Thermosphere campaign to show the common occurrence of westward moving, localized auroral brightenings near the auroral equatorward boundary and to show their association with azimuthally moving flow bursts near or within the SAPS region. These results indicate that the SAPS region, rather than consisting of relatively stable proton precipitation and westward flows, can have rapidly varying flows, with speeds varying from ~100 m/s to ~1 km/s in just a few minutes. The auroral brightenings are associated with bursts of weak electron precipitation that move westward with the westward flow bursts and extend into the SAPS region. Additionally, our observations show evidence that the. . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021023 Available at: http://doi.wiley.com/10.1002/2015JA021023
More Details