Biblio

Found 14 results
Filters: Keyword is Geomagnetic storm  [Clear All Filters]
2019
Authors: Stepanova M., Antonova E.E., Moya P.S., Pinto V.A., and Valdivia J.A.
Title: Multisatellite Analysis of Plasma Pressure in the Inner Magnetosphere During the 1 June 2013 Geomagnetic Storm
Abstract: Using data from Defense Meteorological Satellite Program 16–18, National Oceanic and Atmospheric Administration 15–19, and METOP 1–2 satellites, we reconstructed for the first time a two‐dimensional statistical distribution of plasma pressure in the inner magnetosphere during the 1 June 2013 geomagnetic storm with time resolution of 6 hr. Simultaneously, we used the data from Van Allen Probes and Time History of Events and Macroscale Interactions missions to obtain the in situ plasma pressure in the equatorial plane. This allowed us to corroborate that the dipole mapping works reasonably well during the storm time and that variations of plasma pressure are consistent at low and high altitudes; namely, we observed a drastic increase in plasma pressure a few hours before the storm on. . .
Date: 01/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025965 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025965
More Details
2018
Authors: é M., Matsuoka A., Kumamoto A., Kasahara Y., Goldstein J, et al.
Title: Longitudinal Structure of Oxygen Torus in the Inner Magnetosphere: Simultaneous Observations by Arase and Van Allen Probe A
Abstract: Simultaneous observations of the magnetic field and plasma waves made by the Arase and Van Allen Probe A satellites at different magnetic local time (MLT) enable us to deduce the longitudinal structure of an oxygen torus for the first time. During 04:00–07:10 UT on 24 April 2017, Arase flew from L = 6.2 to 2.0 in the morning sector and detected an enhancement of the average plasma mass up to ~3.5 amu around L = 4.9–5.2 and MLT = 5.0 hr, implying that the plasma consists of approximately 15% O+ ions. Probe A moved outbound from L = 2.0 to 6.2 in the afternoon sector during 04:10–07:30 UT and observed no clear enhancements in the average plasma mass. For this event, the O+ density enhancement in the inner magnetosphere (i.e., oxygen torus) does not extend over all MLT but is skewed tow. . .
Date: 10/2018 Publisher: Geophysical Research Letters Pages: 10,177 - 10,184 DOI: 10.1029/2018GL080122 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL080122
More Details
Authors: Yang Chang, Xiao Fuliang, He Yihua, Liu Si, Zhou Qinghua, et al.
Title: Storm-time evolution of outer radiation belt relativistic electrons by a nearly continuous distribution of chorus
Abstract: During the 13-14 November 2012 storm, Van Allen Probe A simultaneously observed a 10-h period of enhanced chorus (including quasi-parallel and oblique propagation components) and relativistic electron fluxes over a broad range of L = 3−6 and MLT=2 − 10 within a complete orbit cycle. By adopting a Gaussian fit to the observed wave spectra, we obtain the wave parameters and calculate the bounce-averaged diffusion coefficients. We solve the Fokker-Planck diffusion equation to simulate flux evolutions of relativistic (1.8-4.2 MeV) electrons during two intervals when Probe A passed the location L = 4.3 along its orbit. The simulating results show that chorus with combined quasi-parallel and oblique components can produce a more pronounced flux enhancement in the pitch angle range ∼45∘. . .
Date: 02/2018 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL075894 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL075894/full
More Details
2017
Authors: Matsui H., Torbert R B, Spence H E, Argall M. R., Alm L., et al.
Title: Relativistic electron increase during chorus wave activities on the 6-8 March 2016 geomagnetic storm
Abstract: There was a geomagnetic storm on 6–8 March 2016, in which Van Allen Probes A and B separated by ∼2.5 h measured increase of relativistic electrons with energies ∼ several hundred keV to 1 MeV. Simultaneously, chorus waves were measured by both Van Allen Probes and Magnetospheric Multiscale (MMS) mission. Some of the chorus elements were rising-tones, possibly due to nonlinear effects. These measurements are compared with a nonlinear theory of chorus waves incorporating the inhomogeneity ratio and the field equation. From this theory, a chorus wave profile in time and one-dimensional space is simulated. Test particle calculations are then performed in order to examine the energization rate of electrons. Some electrons are accelerated, although more electrons are decelerated. The measu. . .
Date: 10/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024540 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024540/full
More Details
Authors: Ferradas C. P., Zhang J.-C., Spence H E, Kistler L. M., Larsen B A, et al.
Title: Temporal evolution of ion spectral structures during a geomagnetic storm: Observations and modeling
Abstract: Using the Van Allen Probes/Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometer, we perform a case study of the temporal evolution of ion spectral structures observed in the energy range of 1-~50 keV throughout the geomagnetic storm of 2 October 2013. The ion spectral features are observed near the inner edge of the plasma sheet and are signatures of fresh transport from the plasma sheet into the inner magnetosphere. We find that the characteristics of the ion structures are determined by the intensity of the convection electric field. Prior to the beginning of the storm, the plasma sheet inner edge exhibits narrow nose spectral structures that vary little in energy across L values. Ion access to the inner magnetosphere during these times is limited to the nose energy bands. As co. . .
Date: 12/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024702 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024702/full
More Details
2016
Authors: Kistler L.M., Mouikis C. G., Spence H.E., Menz A.M., Skoug R.M., et al.
Title: The Source of O + in the Storm-time Ring Current
Abstract: A stretched and compressed geomagnetic field occurred during the main phase of a geomagnetic storm on 1 June 2013. During the storm the Van Allen Probes spacecraft made measurements of the plasma sheet boundary layer, and observed large fluxes of O+ ions streaming up the field line from the nightside auroral region. Prior to the storm main phase there was an increase in the hot (>1 keV) and more isotropic O+ions in the plasma sheet. In the spacecraft inbound pass through the ring current region during the storm main phase, the H+ and O+ ions were significantly enhanced. We show that this enhanced inner magnetosphere ring current population is due to the inward adiabatic convection of the plasma sheet ion population. The energy range of the O+ ion plasma sheet that impacts the ring curren. . .
Date: 05/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA022204 Available at: http://doi.wiley.com/10.1002/2015JA022204
More Details
Authors: Zhang Jichun, Halford Alexa J., Saikin Anthony A., Huang Chia-Lin, Spence Harlan E., et al.
Title: EMIC waves and associated relativistic electron precipitation on 25-26 January 2013
Abstract: Using measurements from the Van Allen Probes and the Balloon Array for RBSP Relativistic Electron Losses (BARREL), we perform a case study of electromagnetic ion cyclotron (EMIC) waves and associated relativistic electron precipitation (REP) observed on 25–26 January 2013. Among all the EMIC wave and REP events from the two missions, the pair of the events is the closest both in space and time. The Van Allen Probe-B detected significant EMIC waves at L = 2.1–3.9 and magnetic local time (MLT) = 21.0–23.4 for 53.5 min from 2353:00 UT, 25 January 2013. Meanwhile, BARREL-1T observed clear precipitation of relativistic electrons at L = 4.2–4.3 and MLT = 20.7–20.8 for 10.0 min from 2358 UT, 25 January 2013. Local plasma and field conditions for the excitation of the. . .
Date: 10/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022918 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA022918/full
More Details
Authors: Reiff P. H., Daou A. G., Sazykin S. Y., Nakamura R, Hairston M. R., et al.
Title: Multispacecraft Observations and Modeling of the June 22/23, 2015 Geomagnetic Storm
Abstract: The magnetic storm of June 22-23, 2015 was one of the largest in the current solar cycle. We present in situ observations from the Magnetospheric Multiscale Mission (MMS) and the Van Allen Probes (VAP) in the magnetotail, field-aligned currents from AMPERE, and ionospheric flow data from DMSP. Our real-time space weather alert system sent out a “red alert”, correctly predicting Kp indices greater than 8. We show strong outflow of ionospheric Oxygen, dipolarizations in the MMS magnetometer data, and dropouts in the particle fluxes seen by the MMS FPI instrument suite. At ionospheric altitudes, the AMPERE data show highly variable currents exceeding 20 MA. We present numerical simulations with the BATS-R-US global magnetohydrodynamic (MHD) model linked with the Rice Convection Model (RCM. . .
Date: 05/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL069154 Available at: http://doi.wiley.com/10.1002/2016GL069154
More Details
Authors: Matsui H., Paulson K. W., Torbert R B, Spence H E, Kletzing C A, et al.
Title: Nonlinearity in chorus waves during a geomagnetic storm on 1 November 2012
Abstract: In this study, we investigate the possibility of nonlinearity in chorus waves during a geomagnetic storm on 1 November 2012. The data we use were measured by the Van Allen Probe B. Wave data and plasma sheet electron data are analyzed. Chorus waves were frequently measured in the morning side during the main phase of this storm. Large-amplitude chorus waves were seen of the order of ∼0.6 nT and >7 mV/m, which are similar to or larger than the typical ULF waves. The waves quite often consist of rising tones during the burst sampling. Since the rising tone is known as a signature of nonlinearity, a large portion of the waves are regarded as nonlinear at least during the burst sampling periods. These results underline the importance of nonlinearity in the dynamics of chorus waves. We furthe. . .
Date: 01/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021772 Available at: http://doi.wiley.com/10.1002/2015JA021772
More Details
2015
Authors: Hwang J., Choi E.-J., Park J.-S., Fok M.-C., Lee D.-Y., et al.
Title: Comprehensive analysis of the flux dropout during 7-8 November 2008 storm using multi-satellites observations and RBE model
Abstract: We investigate an electron flux dropout during a weak storm on 7–8 November 2008, with Dst minimum value being −37 nT. During this period, two clear dropouts were observed on GOES 11 > 2 MeV electrons. We also find a simultaneous dropout in the subrelativistic electrons recorded by Time History of Events and Macroscale Interactions during Substorms probes in the outer radiation belt. Using the Radiation Belt Environment model, we try to reproduce the observed dropout features in both relativistic and subrelativistic electrons. We found that there are local time dependences in the dropout for both observation and simulation in subrelativistic electrons: (1) particle loss begins from nightside and propagates into dayside and (2) resupply starts from near dawn magnetic local time . . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021085 Available at: http://doi.wiley.com/10.1002/2015JA021085
More Details
Authors: Lugaz N., Farrugia C. J., Huang C.-L., and Spence H E
Title: Extreme geomagnetic disturbances due to shocks within CMEs
Abstract: We report on features of solar wind-magnetosphere coupling elicited by shocks propagating through coronal mass ejections (CMEs) by analyzing the intense geomagnetic storm of 6 August 1998. During this event, the dynamic pressure enhancement at the shock combined with a simultaneous increase in the southward component of the magnetic field resulted in a large earthward retreat of Earth's magnetopause, which remained close to geosynchronous orbit for more than 4 h. This occurred despite the fact that both shock and CME were weak and relatively slow. Another similar example of a weak shock inside a slow CME resulting in an intense geomagnetic storm is the 30 September 2012 event, which strongly depleted the outer radiation belt. We discuss the potential of shocks inside CMEs to cause large . . .
Date: 06/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL064530 Available at: http://doi.wiley.com/10.1002/2015GL064530
More Details
Authors: Xiong Ying, Xie Lun, Pu Zuyin, Fu Suiyan, Chen Lunjin, et al.
Title: Responses of relativistic electron fluxes in the outer radiation belt to geomagnetic storms
Abstract: Geomagnetic storms can either increase or decrease relativistic electron fluxes in the outer radiation belt. A statistical survey of 84 isolated storms demonstrates that geomagnetic storms preferentially decrease relativistic electron fluxes at higher energies, while flux enhancements are more common at lower energies. In about 87% of the storms, 0.3–2.5 MeV electron fluxes show an increase, whereas 2.5–14 MeV electron fluxes increase in only 35% of the storms. Superposed epoch analyses suggest that such “energy-dependent” responses of electrons preferably occur during conditions of high solar wind density which is favorable to generate magnetospheric electromagnetic ion cyclotron (EMIC) waves, and these events are associated with relatively weaker chorus activities. We have examin. . .
Date: 11/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: 9513–9523 DOI: 10.1002/2015JA021440 Available at: http://onlinelibrary.wiley.com/wol1/doi/10.1002/2015JA021440/full
More Details
Authors: Dai Lei, Takahashi Kazue, Lysak Robert, Wang Chi, Wygant John R., et al.
Title: Storm-time occurrence and Spatial distribution of Pc4 poloidal ULF waves in the inner magnetosphere: A Van Allen Probes Statistical study
Abstract: Poloidal ULF waves are capable of efficiently interacting with energetic particles in the ring current and the radiation belt. Using Van Allen Probes (RBSP) data from October 2012 to July 2014, we investigate the spatial distribution and storm-time occurrence of Pc4 (7-25 mHz) poloidal waves in the inner magnetosphere. Pc4 poloidal waves are sorted into two categories: waves with and without significant magnetic compressional components. Two types of poloidal waves have comparable occurrence rates, both of which are much higher during geomagnetic storms. The non-compressional poloidal waves mostly occur in the late recovery phase associated with an increase of Dst toward 0, suggesting that the decay of the ring current provides their free energy source. The occurrence of dayside compressio. . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021134 Available at: http://doi.wiley.com/10.1002/2015JA021134
More Details
Authors: He Yihua, Xiao Fuliang, Zhou Qinghua, Yang Chang, Liu Si, et al.
Title: Van Allen Probes observation and modeling of chorus excitation and propagation during weak geomagnetic activities
Abstract: We report correlated data on nightside chorus waves and energetic electrons during two small storm periods: 1 November 2012 (Dst≈-45) and 14 January 2013 (Dst≈-18). The Van Allen Probes simultaneously observed strong chorus waves at locations L = 5.8 − 6.3, with a lower frequency band 0.1 − 0.5fce and a peak spectral density ∼[10−4 nT2/Hz. In the same period, the fluxes and anisotropy of energetic (∼ 10-300 keV) electrons were greatly enhanced in the interval of large negative interplanetary magnetic field Bz. Using a bi-Maxwellian distribution to model the observed electron distribution, we perform ray tracing simulations to show that nightside chorus waves are indeed produced by the observed electron distribution with a peak growth for a field-aligned propagation around bet. . .
Date: 07/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021376 Available at: http://doi.wiley.com/10.1002/2015JA021376
More Details