Biblio

Found 11 results
Filters: Keyword is EMIC wave  [Clear All Filters]
2015
Authors: Nakamura Satoko, Omura Yoshiharu, Shoji Masafumi, Nosé Masahito, Summers Danny, et al.
Title: Sub-packet structures in EMIC rising tone emissions observed by the THEMIS probes
Abstract: We report sub-packet structures found in electromagnetic ion cyclotron (EMIC) rising tone emissions observed by the Time History of Events and Macroscale Interactions during Substorms (THEMIS) probles. We investigate three typical cases in detail. The first case shows a continuous single rising tone with obvious four sub-packets, and the second case is characterized by a patchy emission with multiple sub-packets triggered in a broadband frequency. The third case looks like a smooth rising tone without any obvious sub-packet in the FFT spectrum, while its amplitude contains small peaks with increasing frequencies. The degree of polarization of each sub-packet is generally higher than 0.8 with a left-handed polarization, and the wave direction of the sub-packets is typically field-aligned. W. . .
Date: 08/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020764 Available at: http://doi.wiley.com/10.1002/2014JA020764
More Details
2016
Authors: Matsuda Shoya, Kasahara Yoshiya, and Kletzing Craig A.
Title: Variation in crossover frequency of EMIC waves in plasmasphere estimated from ion cyclotron whistler waves observed by Van Allen Probe A
Abstract: We report variations in the propagation of the H+ band ion cyclotron whistlers observed by Van Allen Probe A. Ion cyclotron whistlers are one of the EMIC (electromagnetic ion cyclotron) waves generated by mode conversion from lightning whistlers. Crossover frequency is an important frequency for the ion cyclotron whistlers, which is a function of the variations in the local heavy-ion composition. We surveyed waveform data obtained by the Electric and Magnetic Field Instrument and Integrated Science instrument and found that 3461 H+ band ion cyclotron whistlers were observed from 572 km to 5992 km in altitude. The main finding is that the crossover frequencies of the observed events decreased with increasing altitude. These results support the hypothesis that the total heavy-ion density dec. . .
Date: 01/2016 Publisher: Geophysical Research Letters Pages: 28 - 34 DOI: 10.1002/2015GL066893 Available at: http://doi.wiley.com/10.1002/2015GL066893
More Details
2017
Authors: He Zhaoguo, Chen Lunjin, Zhu Hui, Xia Zhiyang, Reeves G D, et al.
Title: Multiple-satellite observation of magnetic dip event during the substorm on 10 October, 2013
Abstract: We present a multiple-satellite observation of the magnetic dip event during the substorm on October 10, 2013. The observation illustrates the temporal and spatial evolution of the magnetic dip and gives a compelling evidence that ring current ions induce the magnetic dip by enhanced plasma beta. The dip moves with the energetic ions in a comparable drift velocity and affects the dynamics of relativistic electrons in the radiation belt. In addition, the magnetic dip provides a favorable condition for the EMIC wave generation based on the linear theory analysis. The calculated proton diffusion coefficients show that the observed EMIC wave can lead to the pitch angle scattering losses of the ring current ions, which in turn partially relax the magnetic dip in the observations. This study enr. . .
Date: 09/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL074869 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL074869/full
More Details
Authors: Xiang Zheng, Tu Weichao, Li Xinlin, Ni Binbin, Morley S. K., et al.
Title: Understanding the Mechanisms of Radiation Belt Dropouts Observed by Van Allen Probes
Abstract: To achieve a better understanding of the dominant loss mechanisms for the rapid dropouts of radiation belt electrons, three distinct radiation belt dropout events observed by Van Allen Probes are comprehensively investigated. For each event, observations of the pitch angle distribution of electron fluxes and electromagnetic ion cyclotron (EMIC) waves are analyzed to determine the effects of atmospheric precipitation loss due to pitch angle scattering induced by EMIC waves. Last closed drift shells (LCDS) and magnetopause standoff position are obtained to evaluate the effects of magnetopause shadowing loss. Evolution of electron phase space density (PSD) versus L* profiles and the μ and K (first and second adiabatic invariants) dependence of the electron PSD drops are calculated to further. . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024487 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024487/full
More Details
2018
Authors: Qin Murong, Hudson Mary, Millan Mary, Woodger Leslie, and Shekhar Sapna
Title: Statistical investigation of the efficiency of EMIC waves in precipitating relativistic electrons
Abstract: Electromagnetic ion cyclotron (EMIC) waves have been proposed to cause Relativistic Electron Precipitation (REP). In our study, we carry out 4 years of analysis from 2013 to 2016, with relativistic electron precipitation spikes obtained from POES satellites and EMIC waves observation from Van Allen Probes. Among the 473 coincidence events when POES satellites go through the region conjugate to EMIC wave activity, only 127 are associated with REP. Additionally, the coincidence occurrence rate is about 10% higher than the random coincidence occurrence rate, indicating that EMIC waves and relativistic electrons can be statistically related, but the link is weaker than expected. H+ band EMIC waves have been regarded as less important than He+ band EMIC waves for the precipitation of relativist. . .
Date: 06/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025419 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025419
More Details
Authors: Xiang Zheng, Tu Weichao, Ni Binbin, Henderson M G, and Cao Xing
Title: A Statistical Survey of Radiation Belt Dropouts Observed by Van Allen Probes
Abstract: A statistical analysis on the radiation belt dropouts is performed based on 4 years of electron phase space density data from the Van Allen Probes. The μ, K, and L* dependence of dropouts and their driving mechanisms and geomagnetic and solar wind conditions are investigated using electron phase space density data sets for the first time. Our results suggest that electronmagnetic ion cyclotron (EMIC) wave scattering is the dominant dropout mechanism at low L* region, which requires the most active geomagnetic and solar wind conditions. In contrast, dropouts at high L* have a higher occurrence and are due to a combination of EMIC wave scattering and outward radial diffusion associated with magnetopause shadowing. In addition, outward radial diffusion at high L* is found to cause larger dro. . .
Date: 08/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL078907 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL078907
More Details
2019
Authors: Chen Huayue, Gao Xinliang, Lu Quanming, and Wang Shui
Title: Analyzing EMIC Waves in the Inner Magnetosphere Using Long‐Term Van Allen Probes Observations
Abstract: With 64‐month magnetic data from Van Allen Probes, we have studied not only the global distribution, wave normal angle (θ), and ellipticity (ε) of electromagnetic ion cyclotron (EMIC) waves, but also the dependence of their occurrence rates and magnetic amplitudes on the AE* index (the mean value of AE index over previous 1 hr). Our results show that H+ band waves are preferentially detected at 5 ≤ L ≤ 6.5, in the noon sector. They typically have small θ (<30°) and weakly left‐hand polarization but become more oblique and linearly polarized at larger magnetic latitudes or L‐shells. With the increase of AE* index, their occurrence rate significantly increases in the noon sector, and their source region extends to dusk sector. He+ band waves usually occur in the predawn and mor. . .
Date: 08/2019 Publisher: Journal of Geophysical Research: Space Physics Pages: 7402 - 7412 DOI: 10.1029/2019JA026965 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026965
More Details
Authors: Blum L.W., Artemyev A., Agapitov O., Mourenas D., Boardsen S., et al.
Title: EMIC Wave‐Driven Bounce Resonance Scattering of Energetic Electrons in the Inner Magnetosphere
Abstract: While electromagnetic ion cyclotron (EMIC) waves have been long studied as a scattering mechanism for ultrarelativistic (megaelectron volt) electrons via cyclotron‐resonant interactions, these waves are also of the right frequency to resonate with the bounce motion of lower‐energy (approximately tens to hundreds of kiloelectron volts) electrons. Here we investigate the effectiveness of this bounce resonance interaction to better determine the effects of EMIC waves on subrelativistic electron populations in Earth's inner magnetosphere. Using wave and plasma parameters directly measured by the Van Allen Probes, we estimate bounce resonance diffusion coefficients for four different events, illustrative of wave and plasma parameters to be encountered in the inner magnetosphere. The range o. . .
Date: 03/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026427 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026427
More Details
Authors: Qin Murong, Hudson Mary, Li Zhao, Millan Robyn, Shen Xiaochen, et al.
Title: Investigating Loss of Relativistic Electrons Associated With EMIC Waves at Low L Values on 22 June 2015
Abstract: In this study, rapid loss of relativistic radiation belt electrons at low L* values (2.4–3.2) during a strong geomagnetic storm on 22 June 2015 is investigated along with five possible loss mechanisms. Both the particle and wave data are obtained from the Van Allen Probes. Duskside H+ band electromagnetic ion cyclotron (EMIC) waves were observed during a rapid decrease of relativistic electrons with energy above 5.2 MeV occurring outside the plasmasphere during extreme magnetopause compression. Lower He+ composition and enriched O+ composition are found compared to typical values assumed in other studies of cyclotron resonant scattering of relativistic electrons by EMIC waves. Quantitative analysis demonstrates that even with the existence of He+ band EMIC waves, it is the H+ band EMIC w. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025726 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025726
More Details
Authors: Wang G., Zhang T. L., Gao Z. L., Wu M. Y., Wang G. Q., et al.
Title: Propagation of EMIC Waves Inside the Plasmasphere: A Two‐Event Study
Abstract: Electromagnetic ion cyclotron (EMIC) waves are important for the loss of high‐energy electrons in the radiation belt. Based on the measurements of Van Allen Probes, two events during the same storm period are presented to study the propagation of EMIC waves. In the first event, left‐handed polarized EMIC waves were observed near the plasmapause, while right‐handed waves were observed in the inner plasmasphere. The Poynting flux of the right‐hand waves was mainly directed inward and equatorward, and no positive growth rates were obtained in the region of these right‐hand waves, indicating the inward propagation of the waves from a higher L‐shell. In the second event, the wave vectors were quasi‐perpendicular to the background magnetic field inside the plasmaspheric plume but b. . .
Date: 10/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA027055 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA027055
More Details
Authors: Wang Hui, He Yangfan, ühr Hermann, Kistler Lynn, Saikin Anthony, et al.
Title: Storm Time EMIC Waves Observed by Swarm and Van Allen Probe Satellites
Abstract: The temporal and spatial evolution of electromagnetic ion cyclotron (EMIC) waves during the magnetic storm of 21–29 June 2015 was investigated using high‐resolution magnetic field observations from Swarm constellation in the ionosphere and Van Allen Probes in the magnetosphere. Magnetospheric EMIC waves had a maximum occurrence frequency in the afternoon sector and shifted equatorward during the expansion phase and poleward during the recovery phase. However, ionospheric waves in subauroral regions occurred more frequently in the nighttime than during the day and exhibited less obvious latitudinal movements. During the main phase, dayside EMIC waves occurred in both the ionosphere and magnetosphere in response to the dramatic increase in the solar wind dynamic pressure. Waves were abse. . .
Date: 01/2019 Publisher: Journal of Geophysical Research: Space Physics Pages: 293 - 312 DOI: 10.1029/2018JA026299 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026299
More Details