Biblio

Found 2 results
Filters: Keyword is turbulence  [Clear All Filters]
2015
Authors: Chaston C. C., Bonnell J. W., Kletzing C A, Hospodarsky G B, Wygant J R, et al.
Title: Broadband low frequency electromagnetic waves in the inner magnetosphere
Abstract: A prominent yet largely unrecognized feature of the inner magnetosphere associated with particle injections, and more generally geomagnetic storms, is the occurrence of broadband electromagnetic field fluctuations over spacecraft frame frequencies (fsc) extending from effectively zero to fsc ≳ 100 Hz. Using observations from the Van Allen Probes we show that these waves most commonly occur pre-midnight but are observed over a range of local times extending into the dayside magnetosphere. We find that the variation of magnetic spectral energy density with fsc obeys inline image over several decades with a spectral break-point at fb ≈1 Hz. The values for α are log normally distributed with α = 1.9 ± 0.6 for fsc < fb andα = 2.9 ± 0.6 for fsc > fb. A is . . .
Date: 09/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021690 Available at: http://onlinelibrary.wiley.com/wol1/doi/10.1002/2015JA021690/abstract
More Details
Authors: Macek W. M., Wawrzaszek A., and Sibeck D G
Title: THEMIS observation of intermittent turbulence behind the quasi-parallel and quasi-perpendicular shocks
Abstract: Turbulence is complex behavior that is ubiquitous in nature, but its mechanism is still not sufficiently clear. Therefore, the main aim of this paper is analysis of intermittent turbulence in magnetospheric and solar wind plasmas using a statistical approach based on experimental data acquired from space missions. The quintet spacecraft of Time History of Events and Macroscale Interactions during Substorms (THEMIS) allows us to investigate the details of turbulent plasma parameters behind the collisionless shocks. We investigate both the solar wind and magnetospheric data by using statistical probability distribution functions of Elsässer variables that can reveal the intermittent character of turbulence in space plasma. Our results suggest that turbulence behind the quasi-perpendicular s. . .
Date: 09/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: 7466 - 7476 DOI: 10.1002/2015JA021656 Available at: http://doi.wiley.com/10.1002/2015JA021656http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021656
More Details