Biblio

Found 7 results
Filters: Keyword is electrons  [Clear All Filters]
2019
Authors: Smirnov A. G., Kronberg E. A., Latallerie F., Daly P. W., Aseev N. A., et al.
Title: Electron intensity measurements by the Cluster/RAPID/IES instrument in Earth's radiation belts and ring current
Abstract: The Cluster mission, launched in 2000, has produced a large database of electron flux intensity measurements in the Earth's magnetosphere by the Research with Adaptive Particle Imaging Detector (RAPID)/ Imaging Electron Spectrometer (IES) instrument. However, due to background contamination of the data with high‐energy electrons (<400 keV) and inner‐zone protons (230‐630 keV) in the radiation belts and ring current, the data have been rarely used for inner‐magnetospheric science. The current paper presents two algorithms for background correction. The first algorithm is based on the empirical contamination percentages by both protons and electrons. The second algorithm uses simultaneous proton observations. The efficiencies of these algorithms are demonstrated by comparison of the . . .
Date: 02/2019 Publisher: Space Weather DOI: 10.1029/2018SW001989 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018SW001989
More Details
2018
Authors: Allison Hayley J., Horne Richard B, Glauert Sarah A, and Del Zanna Giulio
Title: Determination of the Equatorial Electron Differential Flux From Observations at Low Earth Orbit
Abstract: Variations in the high‐energy relativistic electron flux of the radiation belts depend on transport, acceleration, and loss processes, and importantly on the lower‐energy seed population. However, data on the seed population is limited to a few satellite missions. Here we present a new method that utilizes data from the Medium Energy Proton/Electron Detector on board the low‐altitude Polar Operational Environmental Satellites to retrieve the seed population at a pitch angle of 90°. The integral flux values measured by Medium Energy Proton/Electron Detector relate to a low equatorial pitch angle and were converted to omnidirectional flux using parameters obtained from fitting one or two urn:x-wiley:jgra:media:jgra54628:jgra54628-math-0001 functions to pitch angle distributions given . . .
Date: 11/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025786 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025786
More Details
2017
Authors: Califf S., Li X., Zhao H., Kellerman A., Sarris T. E., et al.
Title: The role of the convection electric field in filling the slot region between the inner and outer radiation belts
Abstract: The Van Allen Probes have reported frequent flux enhancements of 100s keV electrons in the slot region, with lower energy electrons exhibiting more dynamic behavior at lower L shells. Also, in situ electric field measurements from the Combined Release and Radiation Effects Satellite, Time History of Events and Macroscale Interactions during Substorms (THEMIS), and the Van Allen Probes have provided evidence for large-scale electric fields at low L shells during active times. We study an event on 19 February 2014 where hundreds of keV electron fluxes were enhanced by orders of magnitude in the slot region and electric fields of 1–2 mV/m were observed below L = 3. Using a 2-D guiding center particle tracer and a simple large-scale convection electric field model, we demonstrate that . . .
Date: 02/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023657 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023657/full
More Details
2016
Authors: Selesnick R. S., Su Y.-J., and Blake J B
Title: Control of the innermost electron radiation belt by large-scale electric fields
Abstract: Electron measurements from the Magnetic Electron Ion Spectrometer instruments on Van Allen Probes, for kinetic energies ∼100 to 400 keV, show characteristic dynamical features of the innermost ( inline image) radiation belt: rapid injections, slow decay, and structured energy spectra. There are also periods of steady or slowly increasing intensity and of fast decay following injections. Local time asymmetry, with higher intensity near dawn, is interpreted as evidence for drift shell distortion by a convection electric field of magnitude ∼0.4 mV/m during geomagnetically quiet times. Fast fluctuations in the electric field, on the drift time scale, cause inward diffusion. Assuming that they are proportional to changes in Kp, the resulting diffusion coefficient is sufficient to replenish . . .
Date: 08/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022973 Available at: http://doi.wiley.com/10.1002/2016JA022973
More Details
Authors: Schiller Q., Kanekal S G, Jian L. K., Li X, Jones A., et al.
Title: Prompt injections of highly relativistic electrons induced by interplanetary shocks: A statistical study of Van Allen Probes observations
Abstract: We conduct a statistical study on the sudden response of outer radiation belt electrons due to interplanetary (IP) shocks during the Van Allen Probes era, i.e., 2012 to 2015. Data from the Relativistic Electron-Proton Telescope instrument on board Van Allen Probes are used to investigate the highly relativistic electron response (E > 1.8 MeV) within the first few minutes after shock impact. We investigate the relationship of IP shock parameters, such as Mach number, with the highly relativistic electron response, including spectral properties and radial location of the shock-induced injection. We find that the driving solar wind structure of the shock does not affect occurrence for enhancement events, 25% of IP shocks are associated with prompt energization, and 14% are associated wi. . .
Date: 12/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL071628 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016GL071628/full
More Details
2015
Authors: Skov Tamitha Mulligan, Fennell Joseph F., Roeder James L., Blake Bernard, and Claudepierre Seth G.
Title: Internal Charging Hazards in Near-Earth Space During Solar Cycle 24 Maximum: Van Allen Probes Measurements
Abstract: The Van Allen Probes mission provides an unprecedented opportunity to make detailed measurements of electrons and protons in the inner magnetosphere during the weak solar maximum period of cycle 24. The MagEIS suite of sensors measures energy spectra and fluxes of charged particles in the space environment. The calculations show that these fluxes result in electron deposition rates high enough to cause internal charging. We use omnidirectional fluxes of electrons and protons to calculate the dose under varying materials and thicknesses of shielding. We show examples of charge deposition rates during the times of nominal and high levels of penetrating fluxes in the inner magnetosphere covering the period from the beginning of 2013 through mid-2014. These charge deposition rates are related . . .
Date: 09/2015 Publisher: IEEE Transactions on Plasma Science Pages: 3070 - 3074 DOI: 10.1109/TPS.2015.2468214 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7247811http://xplorestaging.ieee.org/ielx7/27/7247791/07247811.pdf?arnumber=7247811
More Details
Authors: Selesnick R. S.
Title: Measurement of inner radiation belt electrons with kinetic energy above 1 MeV
Abstract: Data from the Proton-Electron Telescope on the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) satellite, taken during 1992–2009, are analyzed for evidence of inner radiation belt electrons with kinetic energy E > 1 MeV. It is found that most of the data from a detector combination with a nominal energy threshold of 1 MeV were, in fact, caused by a chance coincidence response to lower energy electrons or high-energy protons. In particular, there was no detection of inner belt or slot region electrons above 1 MeV following the 2003 Halloween storm injection, though they may have been present. However, by restricting data to a less-stable, low-altitude trapping region, a persistent presence of inner belt electrons in the energy range 1 to 1.6 MeV is demonstrated. Their soft. . .
Date: 10/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: 8339 - 8349 DOI: 10.1002/2015JA021387 Available at: http://doi.wiley.com/10.1002/2015JA021387http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021387
More Details