Biblio

Found 3 results
Filters: Keyword is DEMETER  [Clear All Filters]
2018
Authors: áhlava J., ěmec F., ík O., šová I., Hospodarskyy G. B., et al.
Title: Longitudinal dependence of whistler mode electromagnetic waves in the Earth's inner magnetosphere
Abstract: We use the measurements performed by the DEMETER (2004‐2010) and the Van Allen Probes (2012‐2016, still operating) spacecraft to investigate the longitudinal dependence of the intensity of whistler mode waves in the Earth's inner magnetosphere. We show that a significant longitudinal dependence is observed inside the plasmasphere on the nightside, primarily in the frequency range 400 Hz–2 kHz. On the other hand, almost no longitudinal dependence is observed on the dayside. The obtained results are compared to the lightning occurrence rate provided by the OTD/LIS mission normalized by a factor accounting for the ionospheric attenuation. The agreement between the two dependencies indicates that lightning generated electromagnetic waves may be responsible for the observed effect, thus s. . .
Date: 07/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025284 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025284
More Details
2014
Authors: Whittaker Ian C., Rodger Craig J., Clilverd Mark A., and Sauvaud é
Title: The effects and correction of the geometric factor for the POES/MEPED electron flux instrument using a multisatellite comparison
Abstract: Measurements from the Polar-Orbiting Environmental Satellite (POES) Medium Energy Proton and Electron Detector (MEPED) instrument are widely used in studies into radiation belt dynamics and atmospheric coupling. However, this instrument has been shown to have a complex energy-dependent response to incident particle fluxes, with the additional possibility of low-energy protons contaminating the electron fluxes. We test the recent Monte Carlo theoretical simulation of the instrument by comparing the responses against observations from an independent experimental data set. Our study examines the reported geometric factors for the MEPED electron flux instrument against the high-energy resolution Instrument for Detecting Particles (IDPs) on the Detection of Electromagnetic Emissions Transmitted. . .
Date: 08/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 6386 - 6404 DOI: 10.1002/2014JA020021 Available at: http://doi.wiley.com/10.1002/2014JA020021
More Details
2013
Authors: Whittaker Ian C., Gamble Rory J., Rodger Craig J., Clilverd Mark A., and Sauvaud é
Title: Determining the spectra of radiation belt electron losses: Fitting DEMETER electron flux observations for typical and storm times
Abstract: The energy spectra of energetic electron precipitation from the radiation belts are studied in order to improve our understanding of the influence of radiation belt processes. The Detection of Electromagnetic Emissions Transmitted from Earthquake Regions (DEMETER) microsatellite electron flux instrument is comparatively unusual in that it has very high energy resolution (128 channels with 17.9 keV widths in normal survey mode), which lends itself to this type of spectral analysis. Here electron spectra from DEMETER have been analyzed from all six years of its operation, and three fit types (power law, exponential, and kappa-type) have been applied to the precipitating flux observations. We show that the power law fit consistently provides the best representation of the flux and that the ka. . .
Date: 12/2013 Publisher: Journal of Geophysical Research: Space Physics Pages: 7611 - 7623 DOI: 10.1002/2013JA019228 Available at: http://doi.wiley.com/10.1002/2013JA019228
More Details