Biblio

Found 3 results
Filters: Keyword is Empirical Model  [Clear All Filters]
2018
Authors: Zhao H., Friedel R H W, Chen Y., Reeves G D, Baker D N, et al.
Title: An empirical model of radiation belt electron pitch angle distributions based on Van Allen Probes measurements
Abstract: Based on over 4 years of Van Allen Probes measurements, an empirical model of radiation belt electron equatorial pitch angle distribution (PAD) is constructed. The model, developed by fitting electron PADs with Legendre polynomials, provides the statistical PADs as a function of L‐shell (L=1 – 6), magnetic local time (MLT), electron energy (~30 keV – 5.2 MeV), and geomagnetic activity (represented by the Dst index), and is also the first empirical PAD model in the inner belt and slot region. For MeV electrons, model results show more significant day‐night PAD asymmetry of electrons with higher energies and during disturbed times, which is caused by geomagnetic field configuration and flux radial gradient changes. Steeper PADs with higher fluxes around 90° pitch angle (PA) and lowe. . .
Date: 04/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025277 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025277
More Details
2017
Authors: Brito Thiago V., and Morley Steven K.
Title: Improving empirical magnetic field models by fitting to in situ data using an optimized parameter approach
Abstract: A method for comparing and optimizing the accuracy of empirical magnetic field models using in situ magnetic field measurements is presented. The optimization method minimizes a cost function - τ - that explicitly includes both a magnitude and an angular term. A time span of 21 days, including periods of mild and intense geomagnetic activity, was used for this analysis. A comparison between five magnetic field models (T96, T01S, T02, TS04, TS07) widely used by the community demonstrated that the T02 model was, on average, the most accurate when driven by the standard model input parameters. The optimization procedure, performed in all models except TS07, generally improved the results when compared to unoptimized versions of the models. Additionally, using more satellites in the optimizat. . .
Date: 10/2017 Publisher: Space Weather DOI: 10.1002/2017SW001702 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017SW001702/full
More Details
2015
Authors: Spasojevic M., Shprits Y.Y., and Orlova K.
Title: Global Empirical Models of Plasmaspheric Hiss using Van Allen Probes
Abstract: Plasmaspheric hiss is a whistler mode emission that permeates the Earth's plasmasphere and is a significant driver of energetic electron losses through cyclotron-resonant pitch angle scattering. The EMFISIS instrument on the Van Allen Probes mission provides vastly improved measurements of the hiss wave environment including continuous measurements of the wave magnetic field cross-spectral matrix and enhanced low frequency coverage. Here, we develop empirical models of hiss wave intensity using two years of Van Allen Probes data. First, we describe the construction of the hiss database. Then, we compare the hiss spectral distribution and integrated wave amplitude obtained from Van Allen Probes to those previously extracted from the CRRES mission. Next, we develop a cubic regression model o. . .
Date: 11/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: n/a - n/a DOI: 10.1002/2015JA021803 Available at: http://doi.wiley.com/10.1002/2015JA021803http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021803
More Details