Biblio

Found 30 results
Filters: Keyword is Radial Transport  [Clear All Filters]
2018
Authors: Sorathia K. A., Ukhorskiy A Y, Merkin V. G., Fennell J. F., and Claudepierre S G
Title: Modeling the Depletion and Recovery of the Outer Radiation Belt During a Geomagnetic Storm: Combined MHD and Test Particle Simulations
Abstract: During geomagnetic storms the intensities of the outer radiation belt electron population can exhibit dramatic variability. Deep depletions in intensity during the main phase are followed by increases during the recovery phase, often to levels that significantly exceed their pre‐storm values. To study these processes, we simulate the evolution of the outer radiation belt during the 17 March 2013 geomagnetic storm using our newly‐developed radiation belt model (CHIMP) based on test particle and coupled 3D ring current and global MHD simulations, and driven solely with solar wind and F10.7 flux data. Our approach differs from previous work in that we use MHD information to identify regions of strong, bursty, and azimuthally localized Earthward convection in the magnetotail where test. . .
Date: 06/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025506 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025506
More Details
Authors: Chaston C. C., Bonnell J. W., Wygant J R, Reeves G D, Baker D N, et al.
Title: Radiation belt “dropouts” and drift-bounce resonances in broadband electromagnetic waves
Abstract: Observations during the main phase of geomagnetic storms reveal an anti-correlation between the occurrence of broadband low frequency electromagnetic waves and outer radiation belt electron flux. We show that the drift-bounce motion of electrons in the magnetic field of these waves leads to rapid electron transport. For observed spectral energy densities it is demonstrated that the wave magnetic field can drive radial diffusion via drift-bounce resonance on timescales less than a drift orbit. This process may provide outward transport sufficient to account for electron “dropouts” during storm main phase and more generally modulate the outer radiation belt during geomagnetic storms.
Date: 02/2018 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL076362 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL076362/full
More Details
2015
Authors: Ukhorskiy A Y, Sitnov M I, Millan R M, Kress B T, Fennell J. F., et al.
Title: Global Storm-Time Depletion of the Outer Electron Belt
Abstract: The outer radiation belt consists of relativistic (>0.5 MeV) electrons trapped on closed trajectories around Earth where the magnetic field is nearly dipolar. During increased geomagnetic activity, electron intensities in the belt can vary by ordersof magnitude at different spatial and temporal scale. The main phase of geomagnetic storms often produces deep depletions of electron intensities over broad regions of the outer belt. Previous studies identified three possible processes that can contribute to the main-phase depletions: adiabatic inflation of electron drift orbits caused by the ring current growth, electron loss into the atmosphere, and electron escape through the magnetopause boundary. In this paper we investigate the relative importance of the adiabatic effect and magnetopause . . .
Date: 03/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020645 Available at: http://doi.wiley.com/10.1002/2014JA020645
More Details
2008
Authors: UKHORSKIY A, and SITNOV M
Title: Radial transport in the outer radiation belt due to global magnetospheric compressions
Abstract: Earth's outer radiation belt is populated by relativistic electrons that produce a complex dynamical response to varying geomagnetic activity. One fundamental process defining global state of the belt is radial transport of electrons across their drift shells. Radial transport is induced by resonant interaction of electron drift motion with ULF oscillations of electric and magnetic fields and is commonly believed to be a diffusive process. The goal of this paper is the analysis of radial transport due to typical ULF fluctuations in the inner magnetospheric fields. For this purpose a test-particle approach is used in the guiding center approximation. In particular we consider ULF oscillations due to global magnetospheric compressions. It is shown that typical pressure variations induce larg. . .
Date: 11/2008 Publisher: Journal of Atmospheric and Solar-Terrestrial Physics Pages: 1714 - 1726 DOI: 10.1016/j.jastp.2008.07.018 Available at: http://www.sciencedirect.com/science/article/pii/S1364682608001971
More Details
Authors: Degeling A W, and Rankin R
Title: Resonant drift echoes in electron phase space density produced by dayside Pc5 waves following a geomagnetic storm
Abstract: [1] The interaction between relativistic, equatorially mirroring electrons and Pc5 Ultra Low Frequency (ULF) waves in the magnetosphere is investigated using a numerical MagnetoHydroDynamic (MHD) model for waves and a test-kinetic model for electron phase space density (PSD). The temporal and spatial characteristics of a ULF wave packet are constrained using ground-based observations of narrowband ULF activity following a geomagnetic storm on 24 March 1991, which occurred from 1200 to 1340 Universal Time (UT). A salient feature of the ULF waves during this interval was the apparent localization of the ULF wave power to the dayside of the magnetosphere and the antisunward propagation of ULF wave phase in the morning and afternoon sectors. This is interpreted to imply a localized source of U. . .
Date: 10/2008 Publisher: Journal of Geophysical Research DOI: 10.1029/2008JA013254 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2008JA013254/abstract
More Details
Authors: SHPRITS Y, ELKINGTON S, MEREDITH N, and SUBBOTIN D
Title: Review of modeling of losses and sources of relativistic electrons in the outer radiation belt I: Radial transport
Abstract: In this paper, we focus on the modeling of radial transport in the Earth's outer radiation belt. A historical overview of the first observations of the radiation belts is presented, followed by a brief description of radial diffusion. We describe how resonant interactions with poloidal and toroidal components of the ULF waves can change the electron's energy and provide radial displacements. We also present radial diffusion and guiding center simulations that show the importance of radial transport in redistributing relativistic electron fluxes and also in accelerating and decelerating radiation belt electrons. We conclude by presenting guiding center simulations of the coupled particle tracing and magnetohydrodynamic (MHD) codes and by discussing the origin of relativistic electrons at ge. . .
Date: 11/2008 Publisher: Journal of Atmospheric and Solar-Terrestrial Physics Pages: 1679 - 1693 DOI: 10.1016/j.jastp.2008.06.008 Available at: http://www.sciencedirect.com/science/article/pii/S1364682608001648
More Details
2007
Authors: Degeling A W, Rankin R, Kabin K, Marchand R, and Mann I R
Title: The effect of ULF compressional modes and field line resonances on relativistic electron dynamics
Abstract: The adiabatic, drift-resonant interaction between relativistic, equatorially mirroring electrons and a ULF compressional wave that couples to a field line resonance (FLR) is modelled. Investigations are focussed on the effect of azimuthal localisation in wave amplitude on the electron dynamics. The ULF wave fields on the equatorial plane (r , φ ) are modelled using a box model [Zhu, X., Kivelson, M.G., 1988. Analytic formulation and quantitative solutions of the coupled ULF wave problem. J. Geophys. Res. 93(A8), 8602–8612], and azimuthal variations are introduced by adding a discrete spectrum of azimuthal modes. Electron trajectories are calculated using drift equations assuming constant magnetic moment M , and the evolution of the distribution function f(r,φ,M,t) from an assumed in. . .
Date: 04/2007 Publisher: Planetary and Space Science Pages: 731 - 742 DOI: 10.1016/j.pss.2006.04.039 Available at: http://www.sciencedirect.com/science/article/pii/S0032063306002893
More Details
2006
Authors: Fei Yue, Chan Anthony A, Elkington Scot R, and Wiltberger Michael J
Title: Radial diffusion and MHD particle simulations of relativistic electron transport by ULF waves in the September 1998 storm
Abstract: In an MHD particle simulation of the September 1998 magnetic storm the evolution of the radiation belt electron radial flux profile appears to be diffusive, and diffusion caused by ULF waves has been invoked as the probable mechanism. In order to separate adiabatic and nonadiabatic effects and to investigate the radial diffusion mechanism during this storm, in this work we solve a radial diffusion equation with ULF wave diffusion coefficients and a time-dependent outer boundary condition, and the results are compared with the phase space density of the MHD particle simulation. The diffusion coefficients include contributions from both symmetric resonance modes (ω ≈ mωd, where ω is the wave frequency, m is the azimuthal wave number, and ωd is the bounce-averaged drift frequency) and . . .
Date: 12/2006 Publisher: Journal of Geophysical Research DOI: 10.1029/2005JA011211 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2005JA011211/abstract
More Details
Authors: Elkington Scot R, Takahashi K, Chi Peter J, Denton Richard E, and Lysak Robert L
Title: A review of ULF interactions with radiation belt electrons
Abstract: Energetic particle fluxes in the outer zone radiation belts can vary over orders of magnitude on a variety of timescales. Power at ULF frequencies, on the order of a few millihertz, have been associated with changes in flux levels among relativis- tic electrons comprising the outer zone of the radiation belts. Power in this part of the spectrum may occur as a result of a number of processes, including internally- generated waves induced by plasma instabilities, and externally generated processes such as shear instabilities at the flanks or compressive variations in the solar wind. Changes in the large-scale convective motion of the magnetosphere are another important class of externally driven variations with power at ULF wavelengths. The mechanism for interaction between ULF vari. . .
Date: Publisher: American Geophysical Union Pages: 177 - 193 DOI: 10.1029/169GM12 Available at: http://onlinelibrary.wiley.com/doi/10.1029/169GM12/summary
More Details
Authors: Sarris T, Li X, and Temerin M
Title: Simulating radial diffusion of energetic (MeV) electrons through a model of fluctuating electric and magnetic fields
Abstract: In the present work, a test particle simulation is performed in a model of analytic Ultra Low Frequency, ULF, perturbations in the electric and magnetic fields of the Earth's magnetosphere. The goal of this work is to examine if the radial transport of energetic particles in quiet-time ULF magnetospheric perturbations of various azimuthal mode numbers can be described as a diffusive process and be approximated by theoretically derived radial diffusion coefficients. In the model realistic compressional electromagnetic field perturbations are constructed by a superposition of a large number of propagating electric and consistent magnetic pulses. The diffusion rates of the electrons under the effect of the fluctuating fields are calculated numerically through the test-particle simulation as a. . .
Date: 10/2006 Publisher: Annales Geophysicae Pages: 2583 - 2598 DOI: 10.5194/angeo-24-2583-2006 Available at: http://www.ann-geophys.net/24/2583/2006/angeo-24-2583-2006.html
More Details
2005
Authors: Ukhorskiy A Y, Takahashi K, Anderson B. J., and Korth H.
Title: Impact of toroidal ULF waves on the outer radiation belt electrons
Abstract: Relativistic electron fluxes in the outer radiation belt exhibit highly variable complex behavior. Previous studies have established a strong correlation of electron fluxes and the inner magnetospheric ULF waves in the Pc 3–5 frequency range. Resonant interaction of ULF waves with the drift motion of radiation belt electrons violates their third adiabatic invariant and consequently leads to their radial transport. If the wave-particle interaction has a stochastic character, then the electron transport is diffusive. The goal of this paper is to analyze the impact of toroidal ULF waves on radiation belt electrons. The study is based on direct measurements of ULF electric fields on the CRRES spacecraft. We show that the electric fields of inner magnetospheric toroidal ULF waves exhibit high. . .
Date: 10/2005 Publisher: Journal of Geophysical Research DOI: 10.1029/2005JA011017 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2005JA011017/abstract
More Details
Authors: Perry K L, Hudson M K, and Elkington S. R.
Title: Incorporating spectral characteristics of Pc5 waves into three-dimensional radiation belt modeling and the diffusion of relativistic electrons
Abstract: The influence of ultralow frequency (ULF) waves in the Pc5 frequency range on radiation belt electrons in a compressed dipole magnetic field is examined. This is the first analysis in three dimensions utilizing model ULF wave electric and magnetic fields on the guiding center trajectories of relativistic electrons. A model is developed, describing magnetic and electric fields associated with poloidal mode Pc5 ULF waves. The frequency and L dependence of the ULF wave power are included in this model by incorporating published ground-based magnetometer data. It is demonstrated here that realistic spectral characteristics play a significant role in the rate of diffusion of relativistic electrons via drift resonance with poloidal mode ULF waves. Radial diffusion rates including bounce motion s. . .
Date: 03/2005 Publisher: Journal of Geophysical Research DOI: 10.1029/2004JA010760 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2004JA010760/abstract
More Details
2004
Authors: Shprits Y Y, and Thorne R. M.
Title: Time dependent radial diffusion modeling of relativistic electrons with realistic loss rates
Abstract: Model simulations are compared to the typically observed evolution of MeV electron fluxes during geomagnetic storms to investigate whether radial diffusion alone can account for the observed variability and to estimate the effect of electron lifetimes. We demonstrate that knowledge of lifetimes is crucial for understanding the radial structure of the storm-time radiation belts and their temporal evolution. Our model results suggest that outer zone lifetimes at 1 MeV are on the order of few days during quite-times and less than a day during storm-time conditions. Losses outside plasmasphere should be included in the modeling of electron fluxes since effective lifetimes are much shorter than that of plasmaspheric losses. Simulations with variable outer boundary conditions show that the deple. . .
Date: 04/2004 Publisher: Geophysical Research Letters DOI: 10.1029/2004GL019591 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2004GL019591/abstract
More Details
2003
Authors: Miyoshi Yoshizumi
Title: Rebuilding process of the outer radiation belt during the 3 November 1993 magnetic storm: NOAA and Exos-D observations
Abstract: Using the data from the NOAA and Exos-D satellites during the 3 November 1993 magnetic storm, the dynamic behavior of electrons with energies from a few tens of kiloelectronvolts to a few and its relation to plasma waves were examined. After the late main phase, relativistic electron flux started to recover from the heart of the outer radiation belt, where the cold plasma density was extremely low, and intense whistler mode chorus emissions were detected. The phase space density showed a peak in the outer belt, and the peak increased gradually. The simulation of the inward radial diffusion process could not reproduce the observed energy spectrum and phase space density variation. On the other hand, the simulated energy diffusion due to the gyroresonant electron-whistler mode wave interacti. . .
Date: 03/2003 Publisher: Journal of Geophysical Research Pages: SMP 3-1–SMP 3-15 DOI: 10.1029/2001JA007542 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2001JA007542/abstract
More Details
Authors: Elkington Scot R
Title: Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field
Abstract: [1] The outer zone radiation belt consists of energetic electrons drifting in closed orbits encircling the Earth between ∼3 and 7 RE. Electron fluxes in the outer belt show a strong correlation with solar and magnetospheric activity, generally increasing during geomagnetic storms with associated high solar wind speeds, and increasing in the presence of magnetospheric ULF waves in the Pc-5 frequency range. In this paper, we examine the influence of Pc-5 ULF waves on energetic electrons drifting in an asymmetric, compressed dipole and find that such particles may be efficiently accelerated through a drift-resonant interaction with the waves. We find that the efficiency of this acceleration increases with increasing magnetospheric distortion (such as may be attributed to increased solar win. . .
Date: 03/2003 Publisher: Journal of Geophysical Research DOI: 10.1029/2001JA009202 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2001JA009202/full
More Details
2000
Authors: Brautigam D H, and Albert J M
Title: Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm
Abstract: The response of outer radiation belt relativistic electrons to the October 9, 1990, magnetic storm is analyzed in detail using a radial diffusion model and data from the Combined Release and Radiation Effects Satellite (CRRES) and the Los Alamos National Laboratory (LANL) geosynchronous satellite 1989-046. Electron measurements are expressed in terms of phase space density as a function of the three adiabatic invariants determined from CRRES magnetic field data and the Tsyganenko 1989 Kp-dependent magnetic field model. The radial diffusion model is implemented with a time-dependent radial diffusion coefficient parameterized by Kp, and a time-dependent outer boundary condition scaled by geosynchronous electron data. The results show that radial diffusion propagates outer boundary variations. . .
Date: 01/2000 Publisher: Journal of Geophysical Research Pages: 291 DOI: 10.1029/1999JA900344 Available at: http://onlinelibrary.wiley.com/doi/10.1029/1999JA900344/full
More Details
1999
Authors: Elkington Scot R, Hudson M K, and Chan Anthony A
Title: Acceleration of relativistic electrons via drift-resonant interaction with toroidal-mode Pc-5 ULF oscillations
Abstract: There has been increasing evidence that Pc-5 ULF oscillations play a fundamental role in the dynamics of outer zone electrons. In this work we examine the adiabatic response of electrons to toroidal-mode Pc-5 field line resonances using a simplified magnetic field model. We find that electrons can be adiabatically accelerated through a drift-resonant interaction with the waves, and present expressions describing the resonance condition and half-width for resonant interaction. The presence of magnetospheric convection electric fields is seen to increase the rate of resonant energization, and allow bulk acceleration of radiation belt electrons. Conditions leading to the greatest rate of acceleration in the proposed mechanism, a nonaxisymmetric magnetic field, superimposed toroidal oscillatio. . .
Date: 11/1999 Publisher: Geophysical Research Letters Pages: 3273 DOI: 10.1029/1999GL003659 Available at: http://onlinelibrary.wiley.com/doi/10.1029/1999GL003659/full
More Details
1988
Authors: Chiu Y T, Nightingale R W, and Rinaldi M A
Title: Simultaneous Radial and Pitch Angle Diffusion in the Outer Electron Radiation Belt
Abstract: A solution of the bimodal (radial and pitch angle) diffusion equation for the radiation belts is developed with special regard for the requirements of satellite radiation belt data analysis. In this paper, we use this solution to test the bimodal theory of outer electron belt diffusion by confronting it with satellite data. Satellite observations, usually over finite volumes of (L, t) space, are seldom sufficient in space-time duration to cover the relaxation to equilibrium of the entire radiation belt. Since time scales of continuous data coverage are often comparable to that of radiation belt disturbances, it is therefore inappropriate to apply impulsive semi-infinite time response solutions of diffusion theory to interpret data from a finite window of (L, t) space. Observational limitat. . .
Date: 04/1988 Publisher: Journal of Geophysical Research Pages: 2619 - 2632 DOI: 10.1029/JA093iA04p02619 Available at: http://onlinelibrary.wiley.com/doi/10.1029/JA093iA04p02619/abstract
More Details
1981
Authors: West H I, Buck R M, and Davidson G T
Title: The Dynamics of Energetic Electrons in the Earth’s Outer Radiation Belt During 1968 as Observed by the Lawrence Livermore National Laboratory’s Spectrometer on Ogo 5
Abstract: An account is given of measurements of electrons made by the LLNL magnetic electron spectrometer (60–3000 keV in seven differential energy channels) on the Ogo 5 satellite in the earth's outer-belt regions during 1968 and early 1969. The data were analyzed to identify those features dominated by pitch angle and radial diffusion; in doing so all aspects of phase space covered by the data were studied, including pitch angle distributions and spectral features, as well as decay rates. The pitch angle distributions are reported elsewhere. The spectra observed in the weeks after a storm at L ∼3–4.5 show the evolution of a peak at ∼1.5 MeV and pronounced minima at ∼0.5 MeV. The observed pitch angle diffusion lifetimes are identified as being the shortest decays observed and are found t. . .
Date: 04/1981 Publisher: Journal of Geophysical Research Pages: 2111 - 2142 DOI: 10.1029/JA086iA04p02111 Available at: http://onlinelibrary.wiley.com/doi/10.1029/JA086iA04p02111/abstract
More Details
1979
Authors: Holzworth R H, and Mozer F S
Title: Direct Evaluation of the Radial Diffusion Coefficient near L = 6 Due to Electric Field Fluctuations
Abstract: The radial diffusion coefficient for radiation belt particles near L=6 has been calculated from the measured electric field fluctuations. Simultaneous balloon flights in August 1974 from six auroral zone sites ranging 180° in magnetic longitude produced the electric field data. The large scale slowly varying ionospheric electric fields from these flights have been mapped to the equator during the quiet magnetic conditions of this campaign. These mapped equatorial electric fields were then Fourier transformed in space and time to produce power spectra of the first two terms of the global azimuthal electric field. From these power spectra the radial diffusion coefficient has been calculated.
Date: 06/1979 Publisher: Journal of Geophysical Research Pages: 2559 - 2566 DOI: 10.1029/JA084iA06p02559 Available at: http://onlinelibrary.wiley.com/doi/10.1029/JA084iA06p02559/abstract
More Details
1973
Authors: Lanzerotti L J, and Morgan Caroline G
Title: ULF Geomagnetic Power near L = 4, 2. Temporal Variation of the Radial Diffusion Coefficient for Relativistic Electrons
Abstract: Measurements at conjugate points on the ground near L = 4 of the power spectra of magnetic-field fluctuations in the frequency range 0.5 to 20 mHz are used as a means of estimating daily values for the relativistic-electron radial-diffusion coefficient DLL for two periods in December 1971 and January 1972. The values deduced for L−10 DLL show a strong variation with magnetic activity, as measured by the Fredricksburg magnetic index KFR. The radial-diffusion coefficient typically increases by a factor of ∼10 for a unit increase in KFR. When KFR ≲ 2, it is generally found that DLL ≲ 2 × 10−9 L10 day−1 for equatorially mirroring electrons having a first invariant M = 750 Mev/gauss; a value of DLL ∼4 × 10−7 L10 day−1 is deduced for one day on which the mean KFR was 4.5. The. . .
Date: 08/1973 Publisher: Journal of Geophysical Research Pages: 4600 - 4610 DOI: 10.1029/JA078i022p04600 Available at: http://onlinelibrary.wiley.com/doi/10.1029/JA078i022p04600/abstract
More Details
1972
Authors: Tomassian Albert D, Farley Thomas A, and Vampola Alfred L
Title: Inner-Zone Energetic-Electron Repopulation by Radial Diffusion
Abstract: A quantitative study of the intrusion of natural electrons into the inner radiation zone during and after the geomagnetic storm of September 2, 1966, shows that the transport is consistent with a radial-diffusion mechanism in which the first two invariants are conserved. Except for the 3-day period of the storm main phase when data were missing, the radial-diffusion coefficient is D = 2.7 × 10−5 L7.9 μ−0.5 day−1 in the range 1.7 ≤ L ≤ 2.6 and 13.3 ≤ μ ≤ 27.4 Mev gauss−1. This value could be produced by variation of a large-scale electric field across the magnetosphere having an amplitude of 0.28 mv / m and a period of 1600 sec. Electric fields having approximately these characteristics have been inferred from previous observations of the motion of whistler ducts within t. . .
Date: 07/1972 Publisher: Journal of Geophysical Research Pages: 3441 - 3454 DOI: 10.1029/JA077i019p03441 Available at: http://onlinelibrary.wiley.com/doi/10.1029/JA077i019p03441/abstract
More Details
1970
Authors: Lanzerotti L J, Maclennan C G, and Schulz Michael
Title: Radial Diffusion of Outer-Zone Electrons: An Empirical Approach to Third-Invariant Violation
Abstract: The near-equatorial fluxes of outer-zone electrons (E>0.5 Mev and E>1.9 Mev) measured by an instrument on the satellite Explorer 15 following the geomagnetic storm of December 17–18, 1962, are used to determine the electron radial diffusion coefficients and electron lifetimes as functions of L for selected values of the conserved first invariant µ. For each value of µ, the diffusion coefficient is assumed to be time-independent and representable in the form D = DnLn. The diffusion coefficients and lifetimes are then simultaneously obtained by requiring that the L-dependent reciprocal electron lifetime, as determined from the Fokker-Planck equation, deviate minimally from a constant in time. Applied to the data, these few assumptions yield a value of D that is smaller by approximately a. . .
Date: 10/1970 Publisher: Journal of Geophysical Research Pages: 5351 - 5371 DOI: 10.1029/JA075i028p05351 Available at: http://onlinelibrary.wiley.com/doi/10.1029/JA075i028p05351/abstract
More Details
1969
Authors: Birmingham Thomas J
Title: Convection Electric Fields and the Diffusion of Trapped Magnetospheric Radiation
Abstract: We explore here the possible importance of time-dependent convection electric fields as an agent for diffusing trapped magnetospheric radiation inward toward the earth. By using a formalism (Birmingham, Northrop, and Fälthammar, 1967) based on first principles, and by adopting a simple model for the magnetosphere and its electric field, we succeed in deriving a one-dimensional diffusion equation to describe statistically the loss-free motion of mirroring particles with arbitrary but conserved values of the first two adiabatic invariants M and J. Solution of this equation bears out the fact that reasonable electric field strengths, correlated in time for no longer than the azimuthal drift period of an average particle, move particles toward the earth at a rate at least an order of magnitud. . .
Date: 05/1969 Publisher: Journal of Geophysical Research Pages: 2169 - 2181 DOI: 10.1029/JA074i009p02169 Available at: http://onlinelibrary.wiley.com/doi/10.1029/JA074i009p02169/abstract
More Details
Authors: Schulz Michael, and Eviatar Aharon
Title: Diffusion of Equatorial Particles in the Outer Radiation Zone
Abstract: Expansions and contractions of the permanently compressed magnetosphere lead to the diffusion of equatorially trapped particles across drift shells. A general technique for obtaining the electric fields induced by these expansions and contractions is described and applied to the Mead geomagnetic field model. The resulting electric drifts are calculated and are superimposed upon the gradient drift executed by a particle that conserves its first (μ) and second (J = 0) adiabatic invariants. The noon-midnight asymmetry of the unperturbed drift trajectory (resulting from gradient drift alone) is approximated by means of a simple model. In this model the angular drift frequency is found to be the geometric mean of a particle's angular drift velocities at noon and midnight. The radial diffusion . . .
Date: 05/1969 Publisher: Journal of Geophysical Research Pages: 2182 - 2192 DOI: 10.1029/JA074i009p02182 Available at: http://onlinelibrary.wiley.com/doi/10.1029/JA074i009p02182/abstract
More Details
Authors: Vernov S N, Gorchakov E V, Kuznetsov S N, Logachev Yu. I, Sosnovets E N, et al.
Title: Particle fluxes in the outer geomagnetic field
Abstract: The outer geomagnetic field comprises the outer radiation belt, consisting of electrons with energies of 104–107 ev, and the unstable radiation zone. The outer radiation belt is bounded on its inner side by a gap, which is at various times located at a distance of 2.2–3.5 RE and in which a considerable precipitation of electrons from radiation belts occurs, possibly owing to a high intensity of electromagnetic waves. The boundary separating the outer radiation belt from the unstable radiation zone is at λ ∼ 71° and ∼9 RE in the equatorial plane on the sunlit side, and at 7–8 RE in the equatorial plane on the nightside. Beyond this, the unstable radiation zone extends out to the magnetosphere boundary and up to λ ∼ 77° on the sunlit side, and out to 14–15 RE on the nightsi. . .
Date: 02/1969 Publisher: Reviews of Geophysics Pages: 257-280 DOI: 10.1029/RG007i001p00257 Available at: http://onlinelibrary.wiley.com/doi/10.1029/RG007i001p00257/abstract
More Details
Authors: Farley Thomas A
Title: Radial Diffusion of Starfish Electrons
Abstract: A study of the change in electron intensities in the Starfish electron belt from January 1, 1963, to November 3, 1965, indicates that radial diffusion, both inward and outward from L of 1.40, was a significant loss mechanism for these electrons during this period. For L values of 1.20 and below, the indicated steepening of the pitch-angle distributions during this period has been interpreted as the result of a radial diffusion source for each L shell concentrated near the geomagnetic equator. Since pitch-angle diffusion lifetimes are not well known for 1.20 < L < 1.65, a definitive radial diffusion coefficient cannot be computed from these data. A maximum reasonable diffusion coefficient (mean square displacement per unit time) computed for this range of L for this period has a minimum at . . .
Date: 07/1969 Publisher: Journal of Geophysical Research Pages: 3591 - 3600 DOI: 10.1029/JA074i014p03591 Available at: http://onlinelibrary.wiley.com/doi/10.1029/JA074i014p03591/abstract
More Details
1968
Authors: Newkirk L L, and Walt M
Title: Radial Diffusion Coefficient for Electrons at 1.76 < L < 5
Abstract: Radial diffusion by nonconservation of the third adiabatic invariant of particle motion is assumed in analyzing experiments in which electrons appeared to move across field lines. Time-dependent solutions of the Fokker-Planck diffusion equation are obtained numerically and fitted to the experimental results by adjusting the diffusion coefficient. Values deduced for the diffusion coefficient vary from 1.3 × 10−5 RE²/day at L = 1.76 to 0.10 RE²/day at L = 5. In the interval 2.6 < L < 5, the coefficient varies as L10±1. Assuming a constant electron source of arbitrary magnitude at L = 6 and the above diffusion coefficients, the equatorial equilibrium distribution is calculated for electrons with energies above 1.6 Mev. The calculation yields an outer belt of electrons whose radial distr. . .
Date: 12/1968 Publisher: Journal of Geophysical Research Pages: 7231 - 7236 DOI: 10.1029/JA073i023p07231 Available at: http://onlinelibrary.wiley.com/doi/10.1029/JA073i023p07231/abstract
More Details
Authors: Newkirk L L, and Walt M
Title: Radial Diffusion Coefficient for Electrons at Low L Values
Abstract: An empirical evaluation of the diffusion coefficient for trapped electrons diffusing across low L shells is obtained by adjusting the coefficient to account for the observed radial profile and the long-term decay rate of the trapped electron flux. The diffusion mechanism is not identified, but it is assumed that the adiabatic invariants µ and J are conserved. The average value of the coefficient for electrons > 1.6 Mev energy is found to decrease monotonically from ∼4 × 10−6 RE²/day at L = 1.16 to ∼2 × 10−7 RE²/day at L = 1.20.
Date: 02/1968 Publisher: Journal of Geophysical Research Pages: 1013 - 1017 DOI: 10.1029/JA073i003p01013 Available at: http://onlinelibrary.wiley.com/doi/10.1029/JA073i003p01013/abstract
More Details
1965
Authors: Falthammar C -G
Title: Effects of time-dependent electric fields on geomagnetically trapped radiation.
Abstract: Large-scale electric potential fields in the magnetosphere are generally invoked in theories of the aurora. It is shown in the present article that irregular fluctuations of such fields cause a random radial motion of trapped energetic particles by violating the third adiabatic invariant. When the first and second invariants are conserved, any radial motion of the particles is associated with a corresponding energy change. Some particles move outward and others inward; but, if there is a source in the outer magnetosphere and a sink farther in, there will be a net inward transport and an associated net energy gain. This mechanism supplements that of particle transport by magnetic disturbances, which has already been discussed in the literature. The transport and acceleration of energetic pa. . .
Date: 06/1965 Publisher: Journal of Geophysical Research Pages: 2503–2516 DOI: 10.1029/JZ070i011p02503 Available at: http://onlinelibrary.wiley.com/doi/10.1029/JZ070i011p02503/full
More Details