Biblio

Found 2 results
Filters: Keyword is zebra stripes  [Clear All Filters]
2016
Authors: Liu Y., Zong Q.-G., Zhou X.-Z., Foster J. C., and Rankin R
Title: Structure and Evolution of Electron "Zebra Stripes" in the Inner Radiation Belt
Abstract: Zebra stripes” are newly found energetic electron energy-spatial (L shell) distributed structure with an energy between tens to a few hundreds keV in the inner radiation belt. Using high-quality measurements of electron fluxes from Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on board the twin Van Allen Probes, we carry out case and statistical studies from April 2013 to April 2014 to study the structural and evolutionary characteristics of zebra stripes below L = 3. It is revealed that the zebra stripes can be transformed into evenly spaced patterns in the electron drift frequency coordinate: the detrended logarithmic fluxes in each L shell region can be well described by sinusoidal functions of drift frequency. The “wave number” of this sinusoidal function, whic. . .
Date: 05/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA022077 Available at: http://doi.wiley.com/10.1002/2015JA022077
More Details
Authors: Lejosne Solène, and Roederer Juan G.
Title: The “zebra stripes”: An effect of F-region zonal plasma drifts on the longitudinal distribution of radiation belt particles
Abstract: We examine a characteristic effect, namely, the ubiquitous appearance of structured peaks and valleys called zebra stripes in the spectrograms of energetic electrons and ions trapped in the inner belt below L ~ 3. We propose an explanation of this phenomenon as a purely kinematic consequence of particle drift velocity modulation caused by F region zonal plasma drifts in the ionosphere. In other words, we amend the traditional assumption that the electric field associated with ionospheric plasma drives trapped particle distributions into rigid corotation with the Earth. An equation based on a simple first-order model is set up to determine quantitatively the appearance of zebra stripes as a function of magnetic time. Our numerical predictions are in agreement with measurements by the Ra. . .
Date: 01/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021925 Available at: http://doi.wiley.com/10.1002/2015JA021925
More Details