Found 3 results
Filters: Keyword is POES  [Clear All Filters]
Authors: Whittaker Ian C., Clilverd Mark A., and Rodger Craig J.
Title: Characteristics of precipitating energetic electron fluxes relative to the plasmapause during geomagnetic storms
Abstract: n this study we investigate the link between precipitating electrons from the Van Allen radiation belts and the dynamical plasmapause. We consider electron precipitation observations from the Polar Orbiting Environmental Satellite (POES) constellation during geomagnetic storms. Superposed epoch analysis is performed on precipitating electron observations for the 13 year period of 1999 to 2012 in two magnetic local time (MLT) sectors, morning and afternoon. We assume that the precipitation is due to wave-particle interactions and our two MLT sectors focus on chorus (outside the plasmapause) and plasmaspheric hiss (inside the plasmapause) waves. We generate simple expressions based on the geomagnetic index, Dst, which reproduce the chorus-driven observations for the >30 keV precipitating ele. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020446 Available at:
More Details
Authors: Whittaker Ian C., Rodger Craig J., Clilverd Mark A., and Sauvaud é
Title: The effects and correction of the geometric factor for the POES/MEPED electron flux instrument using a multisatellite comparison
Abstract: Measurements from the Polar-Orbiting Environmental Satellite (POES) Medium Energy Proton and Electron Detector (MEPED) instrument are widely used in studies into radiation belt dynamics and atmospheric coupling. However, this instrument has been shown to have a complex energy-dependent response to incident particle fluxes, with the additional possibility of low-energy protons contaminating the electron fluxes. We test the recent Monte Carlo theoretical simulation of the instrument by comparing the responses against observations from an independent experimental data set. Our study examines the reported geometric factors for the MEPED electron flux instrument against the high-energy resolution Instrument for Detecting Particles (IDPs) on the Detection of Electromagnetic Emissions Transmitted. . .
Date: 08/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 6386 - 6404 DOI: 10.1002/2014JA020021 Available at:
More Details
Authors: Rodger Craig J., Kavanagh Andrew J., Clilverd Mark A., and Marple Steve R.
Title: Comparison between POES energetic electron precipitation observations and riometer absorptions: Implications for determining true precipitation fluxes
Abstract: Energetic electron precipitation (EEP) impacts the chemistry of the middle atmosphere with growing evidence of coupling to surface temperatures at high latitudes. To better understand this link, it is essential to have realistic observations to properly characterize precipitation and which can be incorporated into chemistry-climate models. The Polar-orbiting Operational Environmental Satellite (POES) detectors measure precipitating particles but only integral fluxes and only in a fraction of the bounce loss cone. Ground-based riometers respond to precipitation from the whole bounce loss cone; they measure the cosmic radio noise absorption (CNA), a qualitative proxy with scant direct information on the energy flux of EEP. POES observations should have a direct relationship with ΔCNA and co. . .
Date: 12/2013 Publisher: Journal of Geophysical Research: Space Physics Pages: 7810 - 7821 DOI: 10.1002/2013JA019439 Available at:
More Details