Biblio

Found 18 results
Filters: First Letter Of Title is U  [Clear All Filters]
2018
Authors: Capannolo L., Li W, Ma Q, Zhang X.-J., Redmon R. J., et al.
Title: Understanding the Driver of Energetic Electron Precipitation Using Coordinated Multisatellite Measurements
Abstract: Magnetospheric plasma waves play a significant role in ring current and radiation belt dynamics, leading to pitch angle scattering loss and/or stochastic acceleration of the particles. During a non‐storm time dropout event on 24 September 2013, intense electromagnetic ion cyclotron (EMIC) waves were detected by Van Allen Probe A (Radiation Belt Storm Probes‐A). We quantitatively analyze a conjunction event when Van Allen Probe A was located approximately along the same magnetic field line as MetOp‐01, which detected simultaneous precipitation of >30 keV protons and energetic electrons over an unexpectedly broad energy range (>~30 keV). Multipoint observations together with quasi‐linear theory provide direct evidence that the observed electron precipitation at higher energy (>~700 k. . .
Date: 07/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL078604 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL078604
More Details
2017
Authors: Li Zhao, Hudson Mary, Patel Maulik, Wiltberger Michael, Boyd Alex, et al.
Title: ULF Wave Analysis and Radial Diffusion Calculation Using a Global MHD Model for the 17 March 2013 and 2015 Storms
Abstract: The 17 March 2015 St. Patrick's Day Storm is the largest geomagnetic storm to date of Solar Cycle 24, with a Dst of -223 nT. The magnetopause moved inside geosynchronous orbit under high solar wind dynamic pressure and strong southward IMF Bz causing loss, however a subsequent drop in pressure allowed for rapid rebuilding of the radiation belts. The 17 March 2013 storm also shows similar effects on outer zone electrons: first a rapid dropout due to inward motion of the magnetopause followed by rapid increase in flux above the pre-storm level early in the recovery phase and a slow increase over the next 12 days. These phases can be seen in temporal evolution of the electron phase space density measured by the ECT instruments on Van Allen Probes. Using the Lyon-Fedder-Mobarry global MHD m. . .
Date: 06/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023846 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023846/full
More Details
Authors: Ozeke Louis G., Mann Ian R., Murphy Kyle R., Sibeck David G., and Baker Daniel N
Title: Ultra-relativistic radiation belt extinction and ULF wave radial diffusion: Modeling the September 2014 extended dropout event
Abstract: In September 2014 an unusually long-lasting (≳10 days) ultra-relativistic electron flux depletion occurred in the outer radiation belt despite ongoing solar wind forcing. We simulate this period using a ULF wave radial diffusion model, driven by observed ULF wave power coupled to flux variations at the outer boundary at L* = 5, including empirical electron loss models due to chorus and hiss wave scattering. Our results show that unexplained rapid main phase loss, that depletes the belt within hours, is essential to explain the observations. Such ultra-relativistic electron extinction decouples the prestorm and poststorm fluxes, revealing the subsequent belt dynamics to be surprisingly independent of prestorm flux. However, once this extinction is included, ULF wave transport and co. . .
Date: 03/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL072811 Available at: http://doi.wiley.com/10.1002/2017GL072811
More Details
Authors: Xiang Zheng, Tu Weichao, Li Xinlin, Ni Binbin, Morley S. K., et al.
Title: Understanding the Mechanisms of Radiation Belt Dropouts Observed by Van Allen Probes
Abstract: To achieve a better understanding of the dominant loss mechanisms for the rapid dropouts of radiation belt electrons, three distinct radiation belt dropout events observed by Van Allen Probes are comprehensively investigated. For each event, observations of the pitch angle distribution of electron fluxes and electromagnetic ion cyclotron (EMIC) waves are analyzed to determine the effects of atmospheric precipitation loss due to pitch angle scattering induced by EMIC waves. Last closed drift shells (LCDS) and magnetopause standoff position are obtained to evaluate the effects of magnetopause shadowing loss. Evolution of electron phase space density (PSD) versus L* profiles and the μ and K (first and second adiabatic invariants) dependence of the electron PSD drops are calculated to further. . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024487 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024487/full
More Details
Authors: Yang Xiaochao, Ni Binbin, Yu Jiang, Zhang Yang, Zhang Xiaoxin, et al.
Title: Unusual refilling of the slot region between the Van Allen radiation belts from November 2004 to January 2005
Abstract: Using multisatellite measurements, a uniquely strong and long-lived relativistic electron slot region refilling event from November 2004 to January 2005 is investigated. This event occurred under remarkable interplanetary and magnetospheric conditions. Both empirically modeled and observationally estimated plasmapause locations demonstrate that the plasmasphere eroded significantly prior to the enhancement phase of this event. The estimated diffusion coefficients indicate that the radial diffusion due to ULF waves is insufficient to account for the observed enhancement of slot region electrons. However, the diffusion coefficients evaluated using the distribution of chorus wave intensities derived from low-altitude POES electron observations indicate that the local acceleration induced by c. . .
Date: 06/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023204 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023204/full
More Details
2016
Authors: Li Jinxing, Bortnik Jacob, Thorne Richard M, Li Wen, Ma Qianli, et al.
Title: Ultrarelativistic electron butterfly distributions created by parallel acceleration due to magnetosonic waves
Abstract: The Van Allen Probe observations during the recovery phase of a large storm that occurred on 17 March 2015 showed that the ultrarelativistic electrons at the inner boundary of the outer radiation belt (L* = 2.6–3.7) exhibited butterfly pitch angle distributions, while the inner belt and the slot region also showed evidence of sub-MeV electron butterfly distributions. Strong magnetosonic waves were observed in the same regions and at the same time periods as these butterfly distributions. Moreover, when these magnetosonic waves extended to higher altitudes (L* = 4.1), the butterfly distributions also extended to the same region. Combining test particle calculations and Fokker-Planck diffusion simulations, we successfully reproduced the formation of the ultrarelativistic electron b. . .
Date: 04/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: 3212 - 3222 DOI: 10.1002/2016JA022370 Available at: http://doi.wiley.com/10.1002/2016JA022370
More Details
Authors: Li W, Mourenas D., Artemyev A. V., Bortnik J, Thorne R M, et al.
Title: Unraveling the excitation mechanisms of highly oblique lower band chorus waves
Abstract: Excitation mechanisms of highly oblique, quasi-electrostatic lower band chorus waves are investigated using Van Allen Probes observations near the equator of the Earth's magnetosphere. Linear growth rates are evaluated based on in situ, measured electron velocity distributions and plasma conditions and compared with simultaneously observed wave frequency spectra and wave normal angles. Accordingly, two distinct excitation mechanisms of highly oblique lower band chorus have been clearly identified for the first time. The first mechanism relies on cyclotron resonance with electrons possessing both a realistic temperature anisotropy at keV energies and a plateau at 100–500 eV in the parallel velocity distribution. The second mechanism corresponds to Landau resonance with a 100–500 eV . . .
Date: 09/2016 Publisher: Geophysical Research Letters Pages: 8867 - 8875 DOI: 10.1002/grl.v43.1710.1002/2016GL070386 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016GL070386/abstract
More Details
Authors: Hartley D. P., Kletzing C A, Kurth W S, Bounds S R, Averkamp T. F., et al.
Title: Using the cold plasma dispersion relation and whistler-mode waves to quantify the antenna sheath impedance of the Van Allen Probes EFW instrument
Abstract: Cold plasma theory and parallel wave propagation are often assumed when approximating the whistler mode magnetic field wave power from electric field observations. The current study is the first to include the wave normal angle from the Electric and Magnetic Field Instrument Suite and Integrated Science package on board the Van Allen Probes in the conversion factor, thus allowing for the accuracy of these assumptions to be quantified. Results indicate that removing the assumption of parallel propagation does not significantly affect calculated plasmaspheric hiss wave powers. Hence, the assumption of parallel propagation is valid. For chorus waves, inclusion of the wave normal angle in the conversion factor leads to significant alterations in the distribution of wave power ratios (observed/. . .
Date: 05/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022501 Available at: http://doi.wiley.com/10.1002/2016JA022501
More Details
2015
Authors: Su Zhenpeng, Zhu Hui, Xiao Fuliang, Zong Q.-G., Zhou X.-Z., et al.
Title: Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons
Abstract: Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. Our results demonstrate that the ULF waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fl. . .
Date: 12/2015 Publisher: Nature Communications Pages: 10096 DOI: 10.1038/ncomms10096 Available at: http://www.nature.com/doifinder/10.1038/ncomms10096
More Details
Authors: Kilpua E. K. J., Hietala H., Turner D. L., Koskinen H. E. J., Pulkkinen T. I., et al.
Title: Unraveling the drivers of the storm time radiation belt response
Abstract: We present a new framework to study the time evolution and dynamics of the outer Van Allen belt electron fluxes. The framework is entirely based on the large-scale solar wind storm drivers and their substructures. The Van Allen Probe observations, revealing the electron flux behavior throughout the outer belt, are combined with continuous, long-term (over 1.5 solar cycles) geosynchronous orbit data set from GOES and solar wind measurements A superposed epoch analysis, where we normalize the timescales for each substructure (sheath, ejecta, and interface region) allows us to avoid smearing effects and to distinguish the electron flux evolution during various driver structures. We show that the radiation belt response is not random: The electron flux variations are determined by the combined. . .
Date: 04/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL063542 Available at: http://doi.wiley.com/10.1002/2015GL063542
More Details
Authors: Li X, Selesnick R. S., Baker D N, Jaynes A. N., Kanekal S G, et al.
Title: Upper limit on the inner radiation belt MeV electron Intensity
Abstract: No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (10s of MeV to GeV). The inner belt proton flux level, however, is relatively stable, thus for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) on board Colorado Student Space Weather Experiment (CSSWE) CubeSat, in a low Earth orbit, clearly demonstrate that there exist sub-MeV electrons in the inner belt because of their flux level is orders of magnitude higher than the background, while higher energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Detailed analysis of high-quality measurements from . . .
Date: 01/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020777 Available at: http://doi.wiley.com/10.1002/2014JA020777
More Details
Authors: O'Brien T.P., Claudepierre S.G., Looper M.D., Blake J.B., Fennell J.F., et al.
Title: On the use of drift echoes to characterize on-orbit sensor discrepancies
Abstract: We describe a method for using drift echo signatures in on-orbit data to resolve discrepancies between different measurements of particle flux. The drift period has a well-defined energy dependence, which gives rise to time dispersion of the echoes. The dispersion can then be used to determine the effective energy for one or more channels given each channel's drift period and the known energy for a reference channel. We demonstrate this technique on multiple instruments from the Van Allen probes mission. Drift echoes are only easily observed at high energies (100s keV to multiple MeV), where several drift periods occur before the observing satellite has moved on or the global magnetic conditions have changed. We describe a first-order correction for spacecraft motion. The drift echo techni. . .
Date: 02/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020859 Available at: http://doi.wiley.com/10.1002/2014JA020859
More Details
2014
Authors: Murphy Kyle R., Mann Ian R., and Ozeke Louis G.
Title: A ULF wave driver of ring current energization
Abstract: ULF wave radial diffusion plays an important role in the transport of energetic electrons in the outer radiation belt, yet similar ring current transport is seldom considered even though ions satisfy a nearly identical drift resonance condition albeit without the relativistic correction. By examining the correlation between ULF wave power and the response of the ring current, characterized by Dst, we demonstrate a definite correlation between ULF wave power and Dst. Significantly, the lagged correlation peaks such that ULF waves precede the response of the ring current and Dst. We suggest that this correlation is the result of enhanced radial transport and energization of ring current ions through drift resonance and ULF wave radial diffusion of ring current ions. An analysis and compariso. . .
Date: 10/2014 Publisher: Geophysical Research Letters Pages: 6595 - 6602 DOI: 10.1002/grl.v41.1910.1002/2014GL061253 Available at: http://doi.wiley.com/10.1002/grl.v41.19http://doi.wiley.com/10.1002/2014GL061253
More Details
Authors: Yang Xiao C., Zhu Guang W., Zhang Xiao X., Sun Yue Q., Liang Jin B., et al.
Title: An unusual long-lived relativistic electron enhancement event excited by sequential CMEs
Abstract: An unusual long-lived intense relativistic electron enhancement event from July to August 2004 is examined using data from Fengyun-1, POES, GOES, ACE, the Cluster Mission and geomagnetic indices. During the initial 6 days of this event, the observed fluxes in the outer zone enhanced continuously and their maximum increased from 2.1 × 102 cm-2·sr-1·s-1 to 3.5 × 104 cm-2·sr-1·s-1, the region of enhanced fluxes extended from L = 3.5-6.5 to L = 2.5-6.5, and the flux peak location shifted inward from L ~ 4.2 to L ~ 3.3. During the following 7 days, without any locational movement, the flux peak increased slowly and exceeded the pre-storm fluxes by about 4 orders of magnitude. Subsequently, the decay rate of relativistic electrons is so slow that the peak re. . .
Date: 10/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA019797 Available at: http://doi.wiley.com/10.1002/2014JA019797
More Details
2013
Authors: Li W, Thorne R M, Bortnik J, Reeves G D, Kletzing C A, et al.
Title: An unusual enhancement of low-frequency plasmaspheric hiss in the outer plasmasphere associated with substorm-injected electrons
Abstract: Both plasmaspheric hiss and chorus waves were observed simultaneously by the two Van Allen Probes in association with substorm-injected energetic electrons. Probe A, located inside the plasmasphere in the postdawn sector, observed intense plasmaspheric hiss, whereas Probe B observed chorus waves outside the plasmasphere just before dawn. Dispersed injections of energetic electrons were observed in the dayside outer plasmasphere associated with significant intensification of plasmaspheric hiss at frequencies down to ~20 Hz, much lower than typical hiss wave frequencies of 100–2000 Hz. In the outer plasmasphere, the upper energy of injected electrons agrees well with the minimum cyclotron resonant energy calculated for the lower cutoff frequency of the observed hiss, and computed conve. . .
Date: 08/2013 Publisher: Geophysical Research Letters Pages: 3798 - 3803 DOI: 10.1002/grl.50787 Available at: http://doi.wiley.com/10.1002/grl.50787
More Details
Authors: Shprits Yuri Y, Subbotin Dmitriy, Drozdov Alexander, Usanova Maria E., Kellerman Adam, et al.
Title: Unusual stable trapping of the ultrarelativistic electrons in the Van Allen radiation belts
Abstract: Radiation in space was the first discovery of the space age. Earth’s radiation belts consist of energetic particles that are trapped by the geomagnetic field and encircle the planet1. The electron radiation belts usually form a two-zone structure with a stable inner zone and a highly variable outer zone, which forms and disappears owing to wave–particle interactions on the timescale of a day, and is strongly influenced by the very-low-frequency plasma waves. Recent observations revealed a third radiation zone at ultrarelativistic energies2, with the additional medium narrow belt (long-lived ring) persisting for approximately 4 weeks. This new ring resulted from a combination of electron losses to the interplanetary medium and scattering by electromagnetic ion cyclotron waves to the Ear. . .
Date: 11/2013 Publisher: Nature Physics Pages: 699 - 703 DOI: 10.1038/nphys2760 Available at: http://www.nature.com/doifinder/10.1038/nphys2760
More Details
2011
Authors: Millan R.M.
Title: Understanding relativistic electron losses with BARREL
Abstract: The primary scientific objective of the Balloon Array for RBSP Relativistic Electron Losses (BARREL) is to understand the processes responsible for scattering relativistic electrons into Earth's atmosphere. BARREL is the first Living with a Star Geospace Mission of Opportunity, and will consist of two Antarctic balloon campaigns conducted in the 2012 and 2013 Austral summer seasons. During each campaign, a total of 20 small View the MathML source(∼20kg) balloon payloads will be launched, providing multi-point measurements of electron precipitation in conjunction with in situ measurements from the two RBSP spacecraft, scheduled to launch in May 2012. In this paper we outline the scientific objectives of BARREL, highlighting a few key science questions that will be addressed by BARREL in c. . .
Date: 07/2011 Publisher: Journal of Atmospheric and Solar-Terrestrial Physics Pages: 1425 - 1434 DOI: 10.1016/j.jastp.2011.01.006 Available at: http://www.sciencedirect.com/science/article/pii/S1364682611000071
More Details
1973
Authors: Lanzerotti L J, and Morgan Caroline G
Title: ULF Geomagnetic Power near L = 4, 2. Temporal Variation of the Radial Diffusion Coefficient for Relativistic Electrons
Abstract: Measurements at conjugate points on the ground near L = 4 of the power spectra of magnetic-field fluctuations in the frequency range 0.5 to 20 mHz are used as a means of estimating daily values for the relativistic-electron radial-diffusion coefficient DLL for two periods in December 1971 and January 1972. The values deduced for L−10 DLL show a strong variation with magnetic activity, as measured by the Fredricksburg magnetic index KFR. The radial-diffusion coefficient typically increases by a factor of ∼10 for a unit increase in KFR. When KFR ≲ 2, it is generally found that DLL ≲ 2 × 10−9 L10 day−1 for equatorially mirroring electrons having a first invariant M = 750 Mev/gauss; a value of DLL ∼4 × 10−7 L10 day−1 is deduced for one day on which the mean KFR was 4.5. The. . .
Date: 08/1973 Publisher: Journal of Geophysical Research Pages: 4600 - 4610 DOI: 10.1029/JA078i022p04600 Available at: http://onlinelibrary.wiley.com/doi/10.1029/JA078i022p04600/abstract
More Details