Biblio

Found 909 results
Journal Article
Authors: de Soria-Santacruz M., Li W, Thorne R M, Ma Q, Bortnik J, et al.
Title: Analysis of plasmaspheric hiss wave amplitudes inferred from low-altitude POES electron data: Technique sensitivity analysis
Abstract: A novel technique capable of inferring wave amplitudes from low-altitude electron measurements from the POES spacecraft has been previously proposed to construct a global dynamic model of chorus and plasmaspheric hiss waves. In this paper we focus on plasmaspheric hiss, which is an incoherent broadband emission that plays a dominant role in the loss of energetic electrons from the inner magnetosphere. We analyze the sensitivity of the POES technique to different inputs used to infer the hiss wave amplitudes during three conjunction events with the Van Allen Probes. These amplitudes are calculated with different input models of the plasma density, wave frequency spectrum, and electron energy spectrum, and the results are compared to the wave observations from the twin Van Allen Probes. Only. . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020941 Available at: http://doi.wiley.com/10.1002/2014JA020941
More Details
Authors: de Soria-Santacruz M., Li W, Thorne R M, Ma Q, Bortnik J, et al.
Title: Analysis of plasmaspheric hiss wave amplitudes inferred from low-altitude POES electron data: Validation with conjunctive Van Allen Probes observations
Abstract: Plasmaspheric hiss plays an important role in controlling the overall structure and dynamics of the Earth's radiation belts. The interaction of plasmaspheric hiss with radiation belt electrons is commonly evaluated using diffusion codes, which rely on statistical models of wave observations that may not accurately reproduce the instantaneous global wave distribution, or the limited in-situ satellite wave measurements from satellites. This paper evaluates the performance and limitations of a novel technique capable of inferring wave amplitudes from low-altitude electron flux observations from the POES spacecraft, which provide extensive coverage in L-shell and MLT. We found that, within its limitations, this technique could potentially be used to build a dynamic global model of the plasmasp. . .
Date: 10/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021148 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2015JA021148/abstract
More Details
Authors: Crabtree Chris, Ganguli Gurudas, and Tejero Erik
Title: Analysis of self-consistent nonlinear wave-particle interactions of whistler waves in laboratory and space plasmas
Abstract: Whistler mode chorus is one of the most important emissions affecting the energization of the radiation belts. Recent laboratory experiments that inject energetic electron beams into a cold plasma have revealed several spectral features in the nonlinear evolution of these instabilities that have also been observed in high-time resolution in situ wave-form data. These features include (1) a sub-element structure which consists of an amplitude modulation on time-scales slower than the bounce time, (2) closely spaced discrete frequency hopping that results in a faster apparent frequency chirp rate, (3) fast frequency changes near the sub-element boundaries, and (4) harmonic generation. In this paper, we develop a finite dimensional self-consistent Hamiltonian model for the evolution of the re. . .
Date: 03/2017 Publisher: Physics of Plasmas Pages: 056501 DOI: 10.1063/1.4977539 Available at: http://aip.scitation.org/doi/10.1063/1.4977539
More Details
Authors: Teng S., Tao X., Xie Y., Zonca F., Chen L, et al.
Title: Analysis of the Duration of Rising Tone Chorus Elements
Abstract: The duration of chorus elements is an important parameter to understand chorus excitation and to quantify the effects of nonlinear wave-particle interactions on energetic electron dynamics. In this work, we analyze the duration of rising tone chorus elements statistically using Van Allen Probes data. We present the distribution of chorus element duration (τ) as a function of magnetic local time (MLT) and the geomagnetic activity level characterized by auroral electrojet (AE) index. We show that the typical value of τ for nightside and dawnside is about 0.12 s, smaller than that for dayside and duskside by about a factor of 2 to 4. Using a previously developed hybrid code, DAWN, we suggest that the background magnetic field inhomogeneity might be an important factor in controlling the cho. . .
Date: 12/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL075824 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL075824/full
More Details
Authors: Simms Laura E., Engebretson Mark J, Smith A. J., Clilverd Mark, Pilipenko Viacheslav, et al.
Title: Analysis of the effectiveness of ground-based VLF wave observations for predicting or nowcasting relativistic electron flux at geostationary orbit
Abstract: Poststorm relativistic electron flux enhancement at geosynchronous orbit has shown correlation with very low frequency (VLF) waves measured by satellite in situ. However, our previous study found little correlation between electron flux and VLF measured by a ground-based instrument at Halley, Antarctica. Here we explore several possible explanations for this low correlation. Using 220 storms (1992–2002), our previous work developed a predictive model of the poststorm flux at geosynchronous orbit based on explanatory variables measured a day or two before the flux increase. In a nowcast model, we use averages of variables from the time period when flux is rising during the recovery phase of geomagnetic storms and limit the VLF (1.0 kHz) measure to the dawn period at Halley (09:00–12:0. . .
Date: 03/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: 2052 - 2060 DOI: 10.1002/2014JA020337 Available at: http://doi.wiley.com/10.1002/2014JA020337
More Details
Authors: Ozeke Louis G., Mann Ian R., Murphy Kyle R., Rae Jonathan, and Milling David K.
Title: Analytic expressions for ULF wave radiation belt radial diffusion coefficients
Abstract: We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirica. . .
Date: 03/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 1587 - 1605 DOI: 10.1002/2013JA019204 Available at: http://doi.wiley.com/10.1002/2013JA019204
More Details
Authors: Chen Huayue, Gao Xinliang, Lu Quanming, and Wang Shui
Title: Analyzing EMIC Waves in the Inner Magnetosphere Using Long‐Term Van Allen Probes Observations
Abstract: With 64‐month magnetic data from Van Allen Probes, we have studied not only the global distribution, wave normal angle (θ), and ellipticity (ε) of electromagnetic ion cyclotron (EMIC) waves, but also the dependence of their occurrence rates and magnetic amplitudes on the AE* index (the mean value of AE index over previous 1 hr). Our results show that H+ band waves are preferentially detected at 5 ≤ L ≤ 6.5, in the noon sector. They typically have small θ (<30°) and weakly left‐hand polarization but become more oblique and linearly polarized at larger magnetic latitudes or L‐shells. With the increase of AE* index, their occurrence rate significantly increases in the noon sector, and their source region extends to dusk sector. He+ band waves usually occur in the predawn and mor. . .
Date: 08/2019 Publisher: Journal of Geophysical Research: Space Physics Pages: 7402 - 7412 DOI: 10.1029/2019JA026965 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026965
More Details
Authors: Yu Yiqun, Koller Josef, Jordanova Vania K., Zaharia Sorin G., Friedel Reinhard W., et al.
Title: Application and testing of the L * neural network with the self-consistent magnetic field model of RAM-SCB
Abstract: We expanded our previous work on L* neural networks that used empirical magnetic field models as the underlying models by applying and extending our technique to drift shells calculated from a physics-based magnetic field model. While empirical magnetic field models represent an average, statistical magnetospheric state, the RAM-SCB model, a first-principles magnetically self-consistent code, computes magnetic fields based on fundamental equations of plasma physics. Unlike the previous L* neural networks that include McIlwain L and mirror point magnetic field as part of the inputs, the new L* neural network only requires solar wind conditions and the Dst index, allowing for an easier preparation of input parameters. This new neural network is compared against those previously trained netwo. . .
Date: 03/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 1683 - 1692 DOI: 10.1002/jgra.v119.310.1002/2013JA019350 Available at: http://doi.wiley.com/10.1002/jgra.v119.3http://doi.wiley.com/10.1002/2013JA019350
More Details
Authors: Shprits Yuri, Kellerman Adam, Kondrashov Dmitri, and Subbotin Dmitriy
Title: Application of a new data operator-splitting data assimilation technique to the 3-D VERB diffusion code and CRRES measurements
Abstract: In this study we present 3-D data assimilation using CRRES data and 3-D Versatile Electron Radiation Belt Model (VERB) using a newly developed operator-splitting method. Simulations with synthetic data show that the operator-splitting Kalman filtering technique proposed in this study can successfully reconstruct the underlying dynamic evolution of the radiation belts. The method is further verified by the comparison with the conventional Kalman filter. We applied the new approach to 3-D data assimilation of real data to globally reconstruct the dynamics of the radiation belts using pitch angle, energy, and L shell dependent CRRES observations. An L shell time cross section of the global data assimilation results for nearly equatorially mirroring particles and high and low values of the fir. . .
Date: 10/2013 Publisher: Geophysical Research Letters Pages: 4998 - 5002 DOI: 10.1002/grl.50969 Available at: http://doi.wiley.com/10.1002/grl.50969
More Details
Authors: Hartley D. P., Chen Y., Kletzing C A, Denton M. H., and Kurth W S
Title: Applying the cold plasma dispersion relation to whistler mode chorus waves: EMFISIS wave measurements from the Van Allen Probes
Abstract: Most theoretical wave models require the power in the wave magnetic field in order to determine the effect of chorus waves on radiation belt electrons. However, researchers typically use the cold plasma dispersion relation to approximate the magnetic wave power when only electric field data are available. In this study, the validity of using the cold plasma dispersion relation in this context is tested using Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) observations of both the electric and magnetic spectral intensities in the chorus wave band (0.1–0.9 fce). Results from this study indicate that the calculated wave intensity is least accurate during periods of enhanced wave activity. For observed wave intensities >10−3 nT2, using the cold plasma dispersi. . .
Date: 02/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020808 Available at: http://doi.wiley.com/10.1002/2014JA020808
More Details
Authors: Mourenas D., Artemyev A. V., and Agapitov O.V.
Title: Approximate analytical formulation of radial diffusion and whistler-induced losses from a pre-existing flux peak in the plasmasphere
Abstract: Modeling the spatio-temporal evolution of relativistic electron fluxes trapped in the Earth's radiation belts in the presence of radial diffusion coupled with wave-induced losses should address one important question: how deep can relativistic electrons penetrate into the inner magnetosphere? However, a full modelling requires extensive numerical simulations solving the comprehensive quasi-linear equations describing pitch-angle and radial diffusion of the electron distribution, making it rather difficult to perform parametric studies of the flux behavior. Here, we consider the particular situation where a localized flux peak (or storage ring) has been produced at low L < 4 during a period of strong disturbances, through a combination of chorus-induced energy diffusion (or direct injection. . .
Date: 08/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021623 Available at: http://doi.wiley.com/10.1002/2015JA021623
More Details
Authors: Mourenas D., Artemyev A. V., Agapitov O.V., Krasnoselskikh V., and Li W
Title: Approximate analytical solutions for the trapped electron distribution due to quasi-linear diffusion by whistler-mode waves
Abstract: The distribution of trapped energetic electrons inside the Earth's radiation belts is the focus of intense studies aiming at better describing the evolution of the space environment in the presence of various disturbances induced by the solar wind or by an enhanced lightning activity. Such studies are usually performed by means of comparisons with full numerical simulations solving the Fokker-Planck quasi-linear diffusion equation for the particle distribution function. Here, we present for the first time approximate but realistic analytical solutions for the electron distribution, which are shown to be in good agreement with exact numerical solutions in situations where resonant scattering of energetic electrons by whistler-mode hiss, lightning-generated or chorus waves, is the dominant p. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020443 Available at: http://doi.wiley.com/10.1002/2014JA020443
More Details
Authors: Zhelavskaya I. S., Spasojevic M., Shprits Y Y, and Kurth W S
Title: Automated determination of electron density from electric field measurements on the Van Allen Probes spacecraft
Abstract: We present the Neural-network-based Upper hybrid Resonance Determination (NURD) algorithm for automatic inference of the electron number density from plasma wave measurements made on board NASA's Van Allen Probes mission. A feedforward neural network is developed to determine the upper hybrid resonance frequency, fuhr, from electric field measurements, which is then used to calculate the electron number density. In previous missions, the plasma resonance bands were manually identified, and there have been few attempts to do robust, routine automated detections. We describe the design and implementation of the algorithm and perform an initial analysis of the resulting electron number density distribution obtained by applying NURD to 2.5 years of data collected with the Electric and Magnetic. . .
Date: 05/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA022132 Available at: http://doi.wiley.com/10.1002/2015JA022132
More Details
Authors: Gupta Ananya, Kletzing Craig, Howk Robin, Kurth William, and Matheny Morgan
Title: Automated Identification and Shape Analysis of Chorus Elements in the Van Allen Radiation Belts
Abstract: An important goal of the Van Allen Probes mission is to understand wave-particle interaction by chorus emissions in terrestrial Van Allen radiation belts. To test models, statistical characterization of chorus properties, such as amplitude variation and sweep rates, is an important scientific goal. The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrumentation suite provides measurements of wave electric and magnetic fields as well as DC magnetic fields for the Van Allen Probes mission. However, manual inspection across terabytes of EMFISIS data is not feasible and as such introduces human confirmation bias. We present signal processing techniques for automated identification, shape analysis, and sweep rate characterization of high-amplitude whistler-mode. . .
Date: 12/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA023949 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA023949/full
More Details
Authors: Yuan Zhigang, Yao Fei, Yu Xiongdong, Huang Shiyong, and Ouyang Zhihai
Title: An Automatic Detection Algorithm Applied to Fast Magnetosonic Waves With Observations of the Van Allen Probes
Abstract: Fast magnetosonic (MS) waves can play an important role in the evolution of the inner magnetosphere. However, there is still not an effective method to quantitatively identify such waves for observations of the Van Allen Probes reasonably. In this paper, we used Van Allen Probes data from 18 September 2012 to 30 September 2014 to find a more comprehensive automatic detection algorithm for fast MS waves through statistical analysis of the major properties, including the planarity, ellipticity, and wave normal angle of whole fluctuations using the singular value decomposition method. According to a control variate method, we find an obvious difference between fast MS waves and other waves in the statistical distribution of their major properties. After eliminating the influence of background. . .
Date: Apr-05-2021 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026387 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026387
More Details
Authors: Lyons L R, Nishimura Y., Gallardo-Lacourt B., Nicolls M. J., Chen S., et al.
Title: Azimuthal flow bursts in the Inner Plasma Sheet and Possible Connection with SAPS and Plasma Sheet Earthward Flow Bursts
Abstract: We have combined radar observations and auroral images obtained during the PFISR Ion Neutral Observations in the Thermosphere campaign to show the common occurrence of westward moving, localized auroral brightenings near the auroral equatorward boundary and to show their association with azimuthally moving flow bursts near or within the SAPS region. These results indicate that the SAPS region, rather than consisting of relatively stable proton precipitation and westward flows, can have rapidly varying flows, with speeds varying from ~100 m/s to ~1 km/s in just a few minutes. The auroral brightenings are associated with bursts of weak electron precipitation that move westward with the westward flow bursts and extend into the SAPS region. Additionally, our observations show evidence that the. . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021023 Available at: http://doi.wiley.com/10.1002/2015JA021023
More Details
Authors: Kistler L.M., Mouikis C. G., Spence H.E., Menz A.M., Skoug R.M., et al.
Title: The Source of O + in the Storm-time Ring Current
Abstract: A stretched and compressed geomagnetic field occurred during the main phase of a geomagnetic storm on 1 June 2013. During the storm the Van Allen Probes spacecraft made measurements of the plasma sheet boundary layer, and observed large fluxes of O+ ions streaming up the field line from the nightside auroral region. Prior to the storm main phase there was an increase in the hot (>1 keV) and more isotropic O+ions in the plasma sheet. In the spacecraft inbound pass through the ring current region during the storm main phase, the H+ and O+ ions were significantly enhanced. We show that this enhanced inner magnetosphere ring current population is due to the inward adiabatic convection of the plasma sheet ion population. The energy range of the O+ ion plasma sheet that impacts the ring curren. . .
Date: 05/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA022204 Available at: http://doi.wiley.com/10.1002/2015JA022204
More Details
Authors: Claudepierre S G, O'Brien T P, Blake J B, Fennell J. F., Roeder J. L., et al.
Title: A background correction algorithm for Van Allen Probes MagEIS electron flux measurements
Abstract: We describe an automated computer algorithm designed to remove background contamination from the Van Allen Probes MagEIS electron flux measurements. We provide a detailed description of the algorithm with illustrative examples from on-orbit data. We find two primary sources of background contamination in the MagEIS electron data: inner zone protons and bremsstrahlung X-rays generated by energetic electrons interacting with the spacecraft material. Bremsstrahlung X-rays primarily produce contamination in the lower energy MagEIS electron channels (~30-500 keV) and in regions of geospace where multi-MeV electrons are present. Inner zone protons produce contamination in all MagEIS energy channels at roughly L < 2.5. The background corrected MagEIS electron data produce a more accurate me. . .
Date: 06/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021171 Available at: http://doi.wiley.com/10.1002/2015JA021171
More Details
Authors: Millan R M, McCarthy M P, Sample J G, Smith D M, Thompson L D, et al.
Title: The Balloon Array for RBSP Relativistic Electron Losses (BARREL)
Abstract: BARREL is a multiple-balloon investigation designed to study electron losses from Earth’s Radiation Belts. Selected as a NASA Living with a Star Mission of Opportunity, BARREL augments the Radiation Belt Storm Probes mission by providing measurements of relativistic electron precipitation with a pair of Antarctic balloon campaigns that will be conducted during the Austral summers (January-February) of 2013 and 2014. During each campaign, a total of 20 small (∼20 kg) stratospheric balloons will be successively launched to maintain an array of ∼5 payloads spread across ∼6 hours of magnetic local time in the region that magnetically maps to the radiation belts. Each balloon carries an X-ray spectrometer to measure the bremsstrahlung X-rays produced by precipitating relativistic electr. . .
Date: 11/2013 Publisher: Space Science Reviews DOI: 10.1007/s11214-013-9971-z Available at: http://link.springer.com/article/10.1007%2Fs11214-013-9971-z
More Details
Authors: Halford A J, McGregor S. L., Hudson M K, Millan R M, and Kress B T
Title: BARREL observations of a Solar Energetic Electron and Solar Energetic Proton event
Abstract: During the second Balloon Array for Radiation Belt Relativistic Electron Losses (BARREL) campaign two solar energetic proton (SEP) events were observed. Although BARREL was designed to observe X-rays created during electron precipitation events, it is sensitive to X-rays from other sources. The gamma lines produced when energetic protons hit the upper atmosphere are used in this paper to study SEP events. During the second SEP event starting on 7 January 2014 and lasting ∼ 3 days, which also had a solar energetic electron (SEE) event occurring simultaneously, BARREL had 6 payloads afloat spanning all MLT sectors and L-values. Three payloads were in a tight array (∼ 2 hrs in MLT and ∼ 2 Δ L) inside the inner magnetosphere and at times conjugate in both L and MLT with the Van Allen Pr. . .
Date: 04/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: n/a - n/a DOI: 10.1002/2016JA022462 Available at: http://doi.wiley.com/10.1002/2016JA022462http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2016JA022462
More Details
Authors: Halford A J, McGregor S. L., Murphy K. R., Millan R M, Hudson M K, et al.
Title: BARREL observations of an ICME-Shock impact with the magnetosphere and the resultant radiation belt electron loss.
Abstract: The Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) mission of opportunity working in tandem with the Van Allen Probes was designed to study the loss of radiation belt electrons to the ionosphere and upper atmosphere. BARREL is also sensitive to X-rays from other sources. During the second BARREL campaign the Sun produced an X-class flare followed by a solar energetic particle event (SEP) associated with the same active region. Two days later on 9 January 2014 the shock generated by the coronal mass ejection (CME) originating from the active region hit the Earth while BARREL was in a close conjunction with the Van Allen Probes. Time History Events and Macroscale Interactions during Substorms (THEMIS) observed the impact of the ICME-shock near the magnetopause, and th. . .
Date: 03/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020873 Available at: http://doi.wiley.com/10.1002/2014JA020873
More Details
Authors: Over Matthew W., Wollschläger Ute, Osorio-Murillo Carlos Andres, and Rubin Yoram
Title: Bayesian inversion of Mualem-van Genuchten parameters in a multilayer soil profile: A data-driven, assumption-free likelihood function
Abstract: This paper introduces a hierarchical simulation and modeling framework that allows for inference and validation of the likelihood function in Bayesian inversion of vadose zone hydraulic properties. The likelihood function or its analogs (objective functions and likelihood measures) are commonly assumed to be multivariate Gaussian in form; however, this assumption is not possible to verify without a hierarchical simulation and modeling framework. In this paper, we present the necessary statistical mechanisms for utilizing the hierarchical framework. We apply the hierarchical framework to the inversion of the vadose zone hydraulic properties within a multilayer soil profile conditioned on moisture content observations collected in the uppermost four layers. The key result of our work is that. . .
Date: 02/2015 Publisher: Water Resources Research Pages: 861 - 884 DOI: 10.1002/wrcr.v51.210.1002/2014WR015252 Available at: http://doi.wiley.com/10.1002/2014WR015252
More Details
Authors: Crabtree Chris, Tejero Erik, Ganguli Gurudas, Hospodarsky George B., and Kletzing Craig A.
Title: Bayesian Spectral Analysis of Chorus Sub-Elements from the Van Allen Probes
Abstract: We develop a Bayesian spectral analysis technique that calculates the probability distribution functions of a superposition of wave-modes each described by a linear growth rate, a frequency and a chirp rate. The Bayesian framework has a number of advantages, including 1) reducing the parameter space by integrating over the amplitude and phase of the wave, 2) incorporating the data from each channel to determine the model parameters such as frequency which leads to high resolution results in frequency and time, 3) the ability to consider the superposition of waves where the wave-parameters are closely spaced, 4) the ability to directly calculate the expectation value of wave parameters without resorting to ensemble averages, 5) the ability to calculate error bars on model parameters. We exa. . .
Date: 04/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023547 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023547/full
More Details
Authors: Schultz Colin
Title: Boom and bust for radiation belt high-energy electron populations
Abstract: Launched on 30 August 2012, the twin Van Allen probes constitute the first dedicated mission in decades to study the Earth's radiation belts. The sensor-laden spacecraft follow a nearly equatorial orbit, which gives them a complete view of the full range of radiation belt processes. In a new study, Baker et al. lay out some of the surprising results unveiled by the crafts' first year in orbit.
Date: 07/2014 Publisher: Eos, Transactions American Geophysical Union Pages: 260 - 260 DOI: 10.1002/eost.v95.2810.1002/2014EO280021 Available at: http://doi.wiley.com/10.1002/2014EO280021
More Details
Authors: Zhao Lei, Yu Yiqun, Delzanno Gian Luca, and Jordanova Vania K.
Title: Bounce- and MLT-averaged diffusion coefficients in a physics-based magnetic field geometry obtained from RAM-SCB for the 17 March 2013 storm
Abstract: Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyroresonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the 17 March 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against nondipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field (RAM-SCB), a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field. By applying quasi-linear theory, the bounce- and Magnetic Local Time (MLT)-averaged electron pit. . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020858 Available at: http://doi.wiley.com/10.1002/2014JA020858
More Details
Authors: Cao Xing, Ni Binbin, Summers Danny, Zou Zhengyang, Fu Song, et al.
Title: Bounce resonance scattering of radiation belt electrons by low-frequency hiss: Comparison with cyclotron and Landau resonances
Abstract: Bounce-resonant interactions with magnetospheric waves have been proposed as important contributing mechanisms for scattering near-equatorially mirroring electrons by violating the second adiabatic invariant associated with the electron bounce motion along a geomagnetic field line. This study demonstrates that low-frequency plasmaspheric hiss with significant wave power below 100 Hz can bounce-resonate efficiently with radiation belt electrons. By performing quantitative calculations of pitch-angle scattering rates, we show that low-frequency hiss induced bounce-resonant scattering of electrons has a strong dependence on equatorial pitch-angle αeq. For electrons with αeq close to 90°, the timescale associated with bounce resonance scattering can be comparable to or even less than 1 hour. . .
Date: 09/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL075104 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL075104/full
More Details
Authors: Chaston C. C., Bonnell J. W., Kletzing C A, Hospodarsky G B, Wygant J R, et al.
Title: Broadband low frequency electromagnetic waves in the inner magnetosphere
Abstract: A prominent yet largely unrecognized feature of the inner magnetosphere associated with particle injections, and more generally geomagnetic storms, is the occurrence of broadband electromagnetic field fluctuations over spacecraft frame frequencies (fsc) extending from effectively zero to fsc ≳ 100 Hz. Using observations from the Van Allen Probes we show that these waves most commonly occur pre-midnight but are observed over a range of local times extending into the dayside magnetosphere. We find that the variation of magnetic spectral energy density with fsc obeys inline image over several decades with a spectral break-point at fb ≈1 Hz. The values for α are log normally distributed with α = 1.9 ± 0.6 for fsc < fb andα = 2.9 ± 0.6 for fsc > fb. A is . . .
Date: 09/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021690 Available at: http://onlinelibrary.wiley.com/wol1/doi/10.1002/2015JA021690/abstract
More Details
Authors: Balcerak Ernie
Title: Bursty flows in magnetosphere influence ionosphere
Abstract: In Earth's plasma sheet—a region of dense ionized gas that lies around the equatorial plane and extends into the magnetotail—plasma flows in large-scale smooth flows as well as in small-scale bursts. Studies have investigated the individual bursty flows but not the large-scale effects of these bursts. To investigate how the bursty flows affect the magnetosphere and its coupling to the ionosphere, Yang et al. conducted two simulations, one with only large-scale flows and the other with random bubbles and blobs of plasma flowing both toward Earth and away from it. They found that the bursty flows significantly altered the magnetic properties of the plasma sheet and the distributions of current in the ionosphere and that the properties found in the bursty flow simulations matched observat. . .
Date: 07/2014 Publisher: Eos, Transactions American Geophysical Union Pages: 260 - 260 DOI: 10.1002/eost.v95.2810.1002/2014EO280019 Available at: http://doi.wiley.com/10.1002/eost.v95.28http://doi.wiley.com/10.1002/2014EO280019
More Details
Authors: Jin YuYue, Yang Chang, He Yihua, Liu Si, Zhou Qinghua, et al.
Title: Butterfly distribution of Earth’s radiation belt relativistic electrons induced by dayside chorus
Abstract: Previous theoretical studies have shown that dayside chorus can produce butterfly distribution of energetic electrons in the Earth’s radiation belts by preferentially accelerating medium pitch angle electrons, but this requires the further confirmation from high-resolution satellite observation. Here, we report correlated Van Allen Probes data on wave and particle during the 11–13 April, 2014 geomagnetic storm. We find that a butterfly pitch angle distribution of relativistic electrons is formed around the location L = 4.52, corresponding to the presence of enhanced dayside chorus. Using a Gaussian distribution fit to the observed chorus spectra, we calculate the bounce-averaged diffusion rates and solve two-dimensional Fokker-Planck equation. Numerical results demonstrate that acceler. . .
Date: 09/2017 Publisher: Science China Technological Sciences DOI: 10.1007/s11431-017-9067-y Available at: https://link.springer.com/article/10.1007/s11431-017-9067-y
More Details
Authors: Artemyev A. V., Agapitov O. V., Mozer F S, and Spence H.
Title: Butterfly pitch-angle distribution of relativistic electrons in the outer radiation belt: Evidence of nonadiabatic scattering
Abstract: In this paper we investigate the scattering of relativistic electrons in the night-side outer radiation belt (around the geostationary orbit). We consider the particular case of low geomagnetic activity (|Dst|< 20 nT), quiet conditions in the solar wind, and absence of whistler wave emissions. For such conditions we find several events of Van-Allen probe observations of butterfly pitch-angle distributions of relativistic electrons (energies about 1-3 MeV). Many previous publications have described such pitch-angle distributions over a wide energy range as due to the combined effect of outward radial diffusion and magnetopause shadowing. In this paper we discuss another mechanism that produces butterfly distributions over a limited range of electron energies. We suggest that such distributi. . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020865 Available at: http://doi.wiley.com/10.1002/2014JA020865
More Details
Authors: Sarris Theodore E., and Li Xinlin
Title: Calculating ultra-low-frequency wave power of the compressional magnetic field vs. L and time: multi-spacecraft analysis using the Van Allen probes, THEMIS and GOES
Abstract: Ultra-low-frequency (ULF) pulsations are critical in radial diffusion processes of energetic particles, and the power spectral density (PSD) of these fluctuations is an integral part of the radial diffusion coefficients and of assimilative models of the radiation belts. Using simultaneous measurements from two Geostationary Operational Environmental Satellites (GOES) geosynchronous satellites, three satellites of the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft constellation and the two Van Allen probes during a 10-day period of intense geomagnetic activity and ULF pulsations of October 2012, we calculate the PSDs of ULF pulsations at different L shells. By following the time history of measurements at different L it is shown that, during this tim. . .
Date: 06/2016 Publisher: Annales Geophysicae Pages: 565 - 571 DOI: 10.5194/angeo-34-565-2016 Available at: http://www.ann-geophys.net/34/565/2016/
More Details
Authors: Turner D. L., Angelopoulos V, Morley S. K., Henderson M G, Reeves G D, et al.
Title: On the cause and extent of outer radiation belt losses during the 30 September 2012 dropout event
Abstract: On 30 September 2012, a flux “dropout” occurred throughout Earth's outer electron radiation belt during the main phase of a strong geomagnetic storm. Using eight spacecraft from NASA's Time History of Events and Macroscale Interactions during Substorms (THEMIS) and Van Allen Probes missions and NOAA's Geostationary Operational Environmental Satellites constellation, we examined the full extent and timescales of the dropout based on particle energy, equatorial pitch angle, radial distance, and species. We calculated phase space densities of relativistic electrons, in adiabatic invariant coordinates, which revealed that loss processes during the dropout were > 90% effective throughout the majority of the outer belt and the plasmapause played a key role in limiting the spatial extent . . .
Date: 03/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 1530 - 1540 DOI: 10.1002/2013JA019446 Available at: http://doi.wiley.com/10.1002/2013JA019446
More Details
Authors: Malaspina David M., Ukhorskiy Aleksandr, Chu Xiangning, and Wygant John
Title: A census of plasma waves and structures associated with an injection front in the inner magnetosphere
Abstract: Now that observations have conclusively established that the inner magnetosphere is abundantly populated with kinetic electric field structures and nonlinear waves, attention has turned to quantifying the ability of these structures and waves to scatter and accelerate inner magnetospheric plasma populations. A necessary step in that quantification is determining the distribution of observed structure and wave properties (e.g. occurrence rates, amplitudes, spatial scales). Kinetic structures and nonlinear waves have broadband signatures in frequency space and consequently, high resolution time domain electric and magnetic field data is required to uniquely identify such structures and waves as well as determine their properties. However, most high resolution fields data is collected with a . . .
Date: 02/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA025005 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA025005/full
More Details
Authors: Lee Jeongwoo, Min Kyungguk, and Kim Kap-Sung
Title: Characteristic dimension of electromagnetic ion cyclotron wave activity in the magnetosphere
Abstract: [1] In this paper, we estimate the size of coherent activity of electromagnetic ion cyclotron (EMIC) waves using the multi‒spacecraft observations made during the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission. We calculate the cross‒correlations between EMIC wave powers measured by different THEMIS spacecraft, plot them over the separation distances between pairs of observing spacecraft, and determine the 1/e folding distance of the correlations as the characteristic dimension of the coherent wave activity. The characteristic radius in the direction transverse to the local magnetic field is found to lie in rather a wide range of 1500–8600 km varying from the AM to PM sectors and also from hydrogen to helium bands. However, the characteristic d. . .
Date: 04/2013 Publisher: Journal of Geophysical Research: Space Physics Pages: 1651 - 1658 DOI: 10.1002/jgra.50242 Available at: http://doi.wiley.com/10.1002/jgra.50242
More Details
Authors: Ma Q, Li W, Thorne R M, Bortnik J, Reeves G D, et al.
Title: Characteristic energy range of electron scattering due to plasmaspheric hiss
Abstract: We investigate the characteristic energy range of electron flux decay due to the interaction with plasmaspheric hiss in the Earth's inner magnetosphere. The Van Allen Probes have measured the energetic electron flux decay profiles in the Earth's outer radiation belt during a quiet period following the geomagnetic storm that occurred on 7 November 2015. The observed energy of significant electron decay increases with decreasing L shell and is well correlated with the energy band corresponding to the first adiabatic invariant μ = 4–200 MeV/G. The electron diffusion coefficients due to hiss scattering are calculated at L = 2–6, and the modeled energy band of effective pitch angle scattering is also well correlated with the constant μ lines and is consistent with the observed e. . .
Date: 11/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023311 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023311/full
More Details
Authors: Yue Chao, Bortnik Jacob, Thorne Richard M, Ma Qianli, An Xin, et al.
Title: The characteristic pitch angle distributions of 1 eV to 600 keV protons near the equator based on Van Allen Probes observations
Abstract: Understanding the source and loss processes of various plasma populations is greatly aided by having accurate knowledge of their pitch angle distributions (PADs). Here, we statistically analyze ~1 eV to 600 keV hydrogen (H+) PADs near the geomagnetic equator in the inner magnetosphere based on Van Allen Probes measurements, to comprehensively investigate how the H+ PADs vary with different energies, magnetic local times (MLTs), L-shells, and geomagnetic conditions. Our survey clearly indicates four distinct populations with different PADs: (1) a pancake distribution of the plasmaspheric H+ at low L-shells except for dawn sector; (2) a bi-directional field-aligned distribution of the warm plasma cloak; (3) pancake or isotropic distributions of ring current H+; (4) radiation belt particles s. . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024421 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024421/full
More Details
Authors: Yue Chao, Chen Lunjin, Bortnik Jacob, Ma Qianli, Thorne Richard M, et al.
Title: The characteristic response of whistler mode waves to interplanetary shocks
Abstract: Magnetospheric whistler mode waves play a key role in regulating the dynamics of the electron radiation belts. Recent satellite observations indicate a significant influence of interplanetary (IP) shocks on whistler mode wave power in the inner magnetosphere. In this study, we statistically investigate the response of whistler mode chorus and plasmaspheric hiss to IP shocks based on Van Allen Probes and THEMIS satellite observations. Immediately after the IP shock arrival, chorus wave power is usually intensified, often at post-midnight to pre-noon sector, while plasmaspheric hiss wave power predominantly decreases near the dayside but intensifies near the nightside. We conclude that chorus wave intensification outside the plasmasphere is probably associated with the suprathermal electron . . .
Date: 09/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024574 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024574/full
More Details
Authors: Teng Shangchun, Li Wen, Tao Xin, Ma Qianli, and Shen Xiaochen
Title: Characteristics and Generation of Low‐Frequency Magnetosonic Waves Below the Proton Gyrofrequency
Abstract: We report a Van Allen Probes observation of large‐amplitude magnetosonic waves with the peak intensity below the proton gyrofrequency (fcp), which may potentially be misinterpreted as electromagnetic ion cyclotron waves. The frequency spacing of the wave harmonic structure suggests that these magnetosonic waves are excited at a distant source region and propagate radially inward. We also conduct a statistical analysis of low‐frequency magnetosonic waves below fcp based on the Van Allen Probes data from October 2012 to December 2018. The spatial distribution shows that these low‐frequency magnetosonic emissions are dominantly observed inside the plasmasphere from the prenoon to the midnight sector within 5° of the geomagnetic equator and typically have modest‐to‐strong wave ampli. . .
Date: 10/2019 Publisher: Geophysical Research Letters Pages: 11652 - 11660 DOI: 10.1029/2019GL085372 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL085372
More Details
Authors: Pinto Víctor A., Bortnik Jacob, Moya Pablo S., Lyons Larry R., Sibeck David G., et al.
Title: Characteristics, Occurrence and Decay Rates of Remnant Belts associated with Three-Belt events in the Earth's Radiation Belts
Abstract: Shortly after the launch of the Van Allen Probes, a new three‐belt configuration of the electron radiation belts was reported. Using data between September 2012 and November 2017, we have identified 30 three‐belt events and found that about 18% of geomagnetic storms result in such configuration. Based on the identified events, we evaluated some characteristics of the remnant (intermediate) belt. We determined the energy range of occurrence and found it peaks at E = 5.2 MeV. We also determined that the magnetopause location and SYM‐H value may play an important role in the outer belt losses that lead to formation and location of the remnant belt. Finally, we calculated the decay rates of the remnant belt for all events and found that their lifetime gets longer as energy increases,. . .
Date: 10/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL080274 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL080274
More Details
Authors: Xu Jiyao, He Zhaohai, Baker D.N., Roth Ilan, Wang C., et al.
Title: Characteristics of high energy proton responses to geomagnetic activities in the inner radiation belt observed by the RBSP satellite
Abstract: High energy trapped particles in the radiation belts constitute potential threats to the functionality of satellites as they enter into those regions. In the inner radiation belt, the characteristics of high‐energy (>20MeV) protons variations during geomagnetic activity times have been studied by implementing four‐year (2013‐2016) observations of the Van Allen probes. An empirical formula has been used to remove the satellite orbit effect, by which proton fluxes have been normalized to the geomagnetic equator. Case studies show that the region of L<1.7 is relatively stable, while L>1.7 is more dynamic and the most significant variation of proton fluxes occurs at L=2.0. The four‐year survey at L=2.0 indicates that for every geomagnetic storm, sharp descent in proton fluxes is accomp. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026205 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026205
More Details
Authors: Zhao H., Li X, Blake J B, Fennell J. F., Claudepierre S G, et al.
Title: Characteristics of pitch angle distributions of 100 s keV electrons in the slot region and inner radiation belt
Abstract: The pitch angle distribution (PAD) of energetic electrons in the slot region and inner radiation belt received little attention in the past decades due to the lack of quality measurements. Using the state-of-art pitch-angle-resolved data from the Magnetic Electron Ion Spectrometer (MagEIS) instrument onboard the Van Allen Probes, a detailed analysis of 100 s keV electron PADs below L = 4 is performed, in which the PADs is categorized into three types: normal (flux peaking at 90∘), cap (exceedingly peaking narrowly around 90∘) and 90∘-minimum (lower flux at 90∘) PADs. By examining the characteristics of the PADs of ~460 keV electrons for over a year, we find that the 90∘-minimum PADs are generally present in the inner belt (L < 2), while normal PADs dominate at .L ~3.5. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020386 Available at: http://doi.wiley.com/10.1002/2014JA020386
More Details
Authors: Whittaker Ian C., Clilverd Mark A., and Rodger Craig J.
Title: Characteristics of precipitating energetic electron fluxes relative to the plasmapause during geomagnetic storms
Abstract: n this study we investigate the link between precipitating electrons from the Van Allen radiation belts and the dynamical plasmapause. We consider electron precipitation observations from the Polar Orbiting Environmental Satellite (POES) constellation during geomagnetic storms. Superposed epoch analysis is performed on precipitating electron observations for the 13 year period of 1999 to 2012 in two magnetic local time (MLT) sectors, morning and afternoon. We assume that the precipitation is due to wave-particle interactions and our two MLT sectors focus on chorus (outside the plasmapause) and plasmaspheric hiss (inside the plasmapause) waves. We generate simple expressions based on the geomagnetic index, Dst, which reproduce the chorus-driven observations for the >30 keV precipitating ele. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020446 Available at: http://doi.wiley.com/10.1002/2014JA020446
More Details
Authors: Fathy A., Kim K.-H., Park J.-S., Jin H., Kletzing C., et al.
Title: Characteristics of Sudden Commencements Observed by Van Allen Probes in the Inner Magnetosphere
Abstract: We have statistically studied sudden commencement (SC) by using the data acquired from Van Allen Probes (VAP) in the inner magnetosphere (L = 3.0–6.5) and GOES spacecraft at geosynchronous orbit (L =∼ 6.7) from October 2012 to September 2017. During the time period, we identified 85 SCs in the inner magnetosphere and 90 SCs at geosynchronous orbit. Statistical results of the SC events reveal the following characteristics. (1) There is strong seasonal dependence of the geosynchronous SC amplitude in the radial BV component at all local times. However, BV shows weak seasonal variation on the dayside in the inner magnetosphere. (2) The local time dependence of the SC amplitude in the compressional BH component at geosynchronous orbit is similar to that in the inner magnetosphere. (3) In a. . .
Date: 02/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024770 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024770/full
More Details
Authors: Zhao H., Johnston W.R., Baker D.N., Li X, Ni B, et al.
Title: Characterization and Evolution of Radiation Belt Electron Energy Spectra Based on the Van Allen Probes Measurements
Abstract: Based on the measurements of ~100‐keV to 10‐MeV electrons from the Magnetic Electron Ion Spectrometer (MagEIS) and Relativistic Electron and Proton Telescope (REPT) on the Van Allen Probes, the radiation belt electron energy spectra characterization and evolution have been investigated systematically. The results show that the majority of radiation belt electron energy spectra can be represented by one of three types of distributions: exponential, power law, and bump‐on‐tail (BOT). The exponential spectra are generally dominant in the outer radiation belt outside the plasmasphere, power law spectra usually appear at high L‐shells during injections of lower‐energy electrons, and BOT spectra commonly dominate inside the plasmasphere at L>2.5 during relatively quiet times. The. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026697 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026697
More Details
Authors: Kellerman A. C., Shprits Y Y, Makarevich R. A., Spanswick E., Donovan E., et al.
Title: Characterization of the energy-dependent response of riometer absorption
Abstract: Ground based riometers provide an inexpensive means to continuously remote sense the precipitation of electrons in the dynamic auroral region of Earth's ionosphere. The energy-dependent relationship between riometer absorption and precipitating electrons is thus of great importance for understanding the loss of electrons from the Earth's magnetosphere. In this study, statistical and event-based analyses are applied to determine the energy of electrons to which riometers chiefly respond. Time-lagged correlation analysis of trapped to precipitating fluxes shows that daily averaged absorption best correlates with ~ 60 keV trapped electron flux at zero-time lag, although large variability is observed across different phases of the solar cycle. High-time resolution statistical cross-correlati. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020027 Available at: http://doi.wiley.com/10.1002/2014JA020027
More Details
Authors: Zhou Xu-Zhi, Wang Zi-Han, Zong Qiu-Gang, Rankin Robert, Kivelson Margaret G., et al.
Title: Charged particle behavior in the growth and damping stages of ultralow frequency waves: theory and Van Allen Probes observations
Abstract: Ultralow frequency (ULF) electromagnetic waves in Earth's magnetosphere can accelerate charged particles via a process called drift resonance. In the conventional drift-resonance theory, a default assumption is that the wave growth rate is time-independent, positive, and extremely small. However, this is not the case for ULF waves in the real magnetosphere. The ULF waves must have experienced an earlier growth stage when their energy was taken from external and/or internal sources, and as time proceeds the waves have to be damped with a negative growth rate. Therefore, a more generalized theory on particle behavior during different stages of ULF wave evolution is required. In this paper, we introduce a time-dependent imaginary wave frequency to accommodate the growth and damping of the wav. . .
Date: 03/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: n/a - n/a DOI: 10.1002/2016JA022447 Available at: http://doi.wiley.com/10.1002/2016JA022447http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2016JA022447
More Details
Authors: Xiao Fuliang, Yang Chang, He Zhaoguo, Su Zhenpeng, Zhou Qinghua, et al.
Title: Chorus acceleration of radiation belt relativistic electrons during March 2013 geomagnetic storm
Abstract: The recent launching of Van Allen probes provides an unprecedent opportunity to investigate variations of the radiation belt relativistic electrons. During the 17–19 March 2013 storm, the Van Allen probes simultaneously detected strong chorus waves and substantial increases in fluxes of relativistic (2 − 4.5 MeV) electrons around L = 4.5. Chorus waves occurred within the lower band 0.1–0.5fce (the electron equatorial gyrofrequency), with a peak spectral density ∼10−4 nT2/Hz. Correspondingly, relativistic electron fluxes increased by a factor of 102–103 during the recovery phase compared to the main phase levels. By means of a Gaussian fit to the observed chorus spectra, the drift and bounce-averaged diffusion coefficients are calculated and then used to solve a 2-D Fokker-Planc. . .
Date: 05/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 3325 - 3332 DOI: 10.1002/2014JA019822 Available at: http://doi.wiley.com/10.1002/2014JA019822
More Details
Authors: Min Kyungguk, Lee Jeongwoo, and Keika Kunihiro
Title: Chorus wave generation near the dawnside magnetopause due to drift shell splitting of substorm-injected electrons
Abstract: We study the relationship between the electron injection and the chorus waves during a substorm event on 23 March 2007. The chorus waves were detected at high geomagnetic latitude (∼70°S) Antarctic observatories in the range of 0600–0900 h in magnetic local time (MLT). Electrons drifting from the injection event were measured by two LANL spacecraft at 0300 and 0900 MLT. The mapping of auroral brightening areas to the magnetic equator shows that the injection occurred in an MLT range of 2200–2400. This estimate is consistent with observations by the THEMIS A, B, and D spacecraft (which were located at 2100 MLT and did not observe electron injections). Our backward model tracing from the magnetic equator near the dawnside magnetopause (which magnetically connects to the Antar. . .
Date: 10/2010 Publisher: American Geophysical Union DOI: 10.1029/2010JA015474
More Details
Authors: Li Jinxing, Bortnik Jacob, An Xin, Li Wen, Thorne Richard M, et al.
Title: Chorus Wave Modulation of Langmuir Waves in the Radiation Belts
Abstract: Using high-resolution waveforms measured by the Van Allen Probes, we report a novel observation in the radiation belts. Namely, we show that multiband, discrete, rising-tone whistler mode chorus emissions exhibit a one-to-one correlation with Langmuir wave bursts. Moreover, the periodic Langmuir wave bursts are generally observed at the phase location where the chorus wave E|| component is oriented opposite to its propagation direction. The electron measurements show a beam in phase space density at the particle velocity that matches the parallel phase velocity of the chorus waves. Based on this evidence, we conclude that the chorus waves accelerate the suprathermal electrons via Landau resonance and generate a localized electron beam in phase space density. Consequently, the Langmuir wave. . .
Date: 12/2017 Publisher: Geophysical Research Letters Pages: 11,713 - 11,721 DOI: 10.1002/2017GL075877 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL075877/full
More Details
Authors: Malaspina D. M., Ergun R. E., Sturner A., Wygant J R, Bonnell J W, et al.
Title: Chorus waves and spacecraft potential fluctuations: Evidence for wave-enhanced photoelectron escape
Abstract: Chorus waves are important for electron energization and loss in Earth's radiation belts and inner magnetosphere. Because the amplitude and spatial distribution of chorus waves can be strongly influenced by plasma density fluctuations and spacecraft floating potential can be a diagnostic of plasma density, the relationship between measured potential and chorus waves is examined using Van Allen Probes data. While measured potential and chorus wave electric fields correlate strongly, potential fluctuation properties are found not to be consistent with plasma density fluctuations on the timescales of individual chorus wave packets. Instead, potential fluctuations are consistent with enhanced photoelectron escape driven by chorus wave electric fields. Enhanced photoelectron escape may result i. . .
Date: 01/2014 Publisher: Geophysical Research Letters Pages: 236 - 243 DOI: 10.1002/2013GL058769 Available at: http://doi.wiley.com/10.1002/2013GL058769
More Details

Pages