Found 78 results
Filters: Keyword is Radiation belt  [Clear All Filters]
Authors: Li Zhao, Hudson Mary, Paral Jan, Wiltberger Michael, and Turner Drew
Title: Global ULF wave analysis of radial diffusion coefficients using a global MHD model for the 17 March 2015 storm
Abstract: The 17–18 March 2015 storm is the largest geomagnetic storm in the Van Allen Probes era to date. The Lyon-Fedder-Mobarry global MHD model has been run for this event using ARTEMIS data as solar wind input. The ULF wave power spectral density of the azimuthal electric field and compressional magnetic field is analyzed in the 0.5–8.3 mHz range. The lowest three azimuthal modes account for 70% of the total power during quiet times. However, during high activity, they are not exclusively dominant. The calculation of the radial diffusion coefficient is presented. We conclude that the electric field radial diffusion coefficient is dominant over the magnetic field coefficient by one to two orders of magnitude. This result contrasts with the dominant magnetic field diffusion coefficient used i. . .
Date: 07/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022508 Available at:
More Details
Authors: Mann Ian R., and Ozeke Louis G.
Title: How quickly, how deeply, and how strongly can dynamical outer boundary conditions impact Van Allen radiation belt morphology?
Abstract: Here we examine the speed, strength, and depth of the coupling between dynamical variations of ultrarelativistic electron flux at the outer boundary and that in the heart of the outer radiation belt. Using ULF wave radial diffusion as an exemplar, we show how changing boundary conditions can completely change belt morphology even under conditions of identical wave power. In the case of ULF wave radial diffusion, the temporal dynamics of a new source population or a sink of electron flux at the outer plasma sheet boundary can generate a completely opposite response which reaches deep into the belt under identical ULF wave conditions. Very significantly, here we show that such coupling can occur on timescales much faster than previously thought. We show that even on timescales ~1 h, change. . .
Date: 06/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: 5553 - 5558 DOI: 10.1002/jgra.v121.610.1002/2016JA022647 Available at:
More Details
Authors: O'Brien T P, Claudepierre S G, Guild T B, Fennell J. F., Turner D. L., et al.
Title: Inner zone and slot electron radial diffusion revisited
Abstract: Using recent data from NASA's Van Allen Probes, we estimate the quiet time radial diffusion coefficients for electrons in the inner radiation belt (L < 3) with energies from ~50 to 750 keV. The observations are consistent with dynamics dominated by pitch angle scattering and radial diffusion. We use a coordinate system in which these two modes of diffusion are separable. Then we integrate phase space density over pitch angle to obtain a “bundle content” that is invariant to pitch angle scattering, except for atmospheric loss. We estimate the effective radial diffusion coefficient from the temporal and radial variation of the bundle content. We show that our diffusion coefficients agree well with previously determined values obtained in the 1960s and 1970s and follow the form one . . .
Date: 07/2016 Publisher: Geophysical Research Letters Pages: 7301 - 7310 DOI: 10.1002/2016GL069749 Available at:
More Details
Authors: Selesnick R. S., Baker D N, Jaynes A. N., Li X, Kanekal S G, et al.
Title: Inward diffusion and loss of radiation belt protons
Abstract: Radiation belt protons in the kinetic energy range 24 to 76 MeV are being measured by the Relativistic Electron Proton Telescope on each of the two Van Allen Probes. Data have been processed for the purpose of studying variability in the trapped proton intensity during October 2013 to August 2015. For the lower energies (≲32 MeV), equatorial proton intensity near L = 2 showed a steady increase that is consistent with inward diffusion of trapped solar protons, as shown by positive radial gradients in phase space density at fixed values of the first two adiabatic invariants. It is postulated that these protons were trapped with enhanced efficiency during the 7 March 2012 solar proton event. A model that includes radial diffusion, along with known trapped proton source and loss processes, s. . .
Date: 03/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: n/a - n/a DOI: 10.1002/2015JA022154 Available at:
More Details
Authors: Boyd A.J., Spence H.E., Huang C.-L., Reeves G D, Baker D N, et al.
Title: Statistical Properties of the Radiation Belt Seed Population
Abstract: We present a statistical analysis of phase space density data from the first 26 months of the Van Allen Probes mission. In particular we investigate the relationship between the 10s-100s keV seed electrons and >1 MeV core radiation belt electron population. Using a cross correlation analysis, we find that the seed and core populations are well correlated with a coefficient of ≈ 0.73 with a time lag of 10-15 hours. We present evidence of a seed population threshold that is necessary for subsequent acceleration. The depth of penetration of the seed population determines the inner boundary of the acceleration process. However, we show that an enhanced seed population alone is not enough to produce acceleration in the higher energies, implying that the seed population of 100s of keV electron. . .
Date: 07/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022652 Available at:
More Details
Authors: Liu Y., Zong Q.-G., Zhou X.-Z., Foster J. C., and Rankin R
Title: Structure and Evolution of Electron "Zebra Stripes" in the Inner Radiation Belt
Abstract: Zebra stripes” are newly found energetic electron energy-spatial (L shell) distributed structure with an energy between tens to a few hundreds keV in the inner radiation belt. Using high-quality measurements of electron fluxes from Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on board the twin Van Allen Probes, we carry out case and statistical studies from April 2013 to April 2014 to study the structural and evolutionary characteristics of zebra stripes below L = 3. It is revealed that the zebra stripes can be transformed into evenly spaced patterns in the electron drift frequency coordinate: the detrended logarithmic fluxes in each L shell region can be well described by sinusoidal functions of drift frequency. The “wave number” of this sinusoidal function, whic. . .
Date: 05/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA022077 Available at:
More Details
Authors: Kessel Mona
Title: Things we don't yet understand about solar driving of the radiation belts.
Abstract: This commentary explores how close we are to predicting the behavior of the radiations belts - the primary science objective of NASA's Van Allen Probes mission. Starting with what we know or think we know about competing sources, enhancement, transport, and loss, I walk through recent papers that have improved our understanding and then focus on flux dropouts as one particular yardstick of success. I mention a new paradigm for electrons and the importance of reliably matching models and observations for different solar inputs. Although the case for prediction remains a work in progress, there are encouraging signs of progress.
Date: 05/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022472 Available at:
More Details
Authors: Li Jinxing, Bortnik Jacob, Thorne Richard M, Li Wen, Ma Qianli, et al.
Title: Ultrarelativistic electron butterfly distributions created by parallel acceleration due to magnetosonic waves
Abstract: The Van Allen Probe observations during the recovery phase of a large storm that occurred on 17 March 2015 showed that the ultrarelativistic electrons at the inner boundary of the outer radiation belt (L* = 2.6–3.7) exhibited butterfly pitch angle distributions, while the inner belt and the slot region also showed evidence of sub-MeV electron butterfly distributions. Strong magnetosonic waves were observed in the same regions and at the same time periods as these butterfly distributions. Moreover, when these magnetosonic waves extended to higher altitudes (L* = 4.1), the butterfly distributions also extended to the same region. Combining test particle calculations and Fokker-Planck diffusion simulations, we successfully reproduced the formation of the ultrarelativistic electron b. . .
Date: 04/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: 3212 - 3222 DOI: 10.1002/2016JA022370 Available at:
More Details
Authors: Colpitts C. A., Cattell C. A., Engebretson M., Broughton M., Tian S., et al.
Title: Van Allen Probes observations of cross-scale coupling between electromagnetic ion cyclotron waves and higher-frequency wave modes
Abstract: We present observations of higher-frequency (~50–2500 Hz, ~0.1–0.7 fce) wave modes modulated at the frequency of colocated lower frequency (0.5–2 Hz, on the order of fci) waves. These observations come from the Van Allen Probes Electric Field and Waves instrument's burst mode data and represent the first observations of coupling between waves in these frequency ranges. The higher-frequency wave modes, typically whistler mode hiss and chorus or magnetosonic waves, last for a few to a few tens of seconds but are in some cases observed repeatedly over several hours. The higher-frequency waves are observed to be unmodulated before and after the presence of the electromagnetic ion cyclotron (EMIC) waves, but when the EMIC waves are present, the amplitude of the higher-frequency waves . . .
Date: 11/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL071566 Available at:
More Details
Authors: Foster J. C., Erickson P. J., Omura Y., Baker D N, Kletzing C A, et al.
Title: Van Allen Probes Observations of Prompt MeV Radiation Belt Electron Acceleration in Non-Linear Interactions with VLF Chorus
Abstract: Prompt recovery of MeV electron populations in the post-storm core of the outer terrestrial radiation belt involves local acceleration of a seed population of energetic electrons in interactions with VLF chorus waves. Electron interactions during the generation of VLF rising tones are strongly non-linear, such that a fraction of the relativistic electrons at resonant energies are trapped by waves, leading to significant non-adiabatic energy exchange. Through detailed examination of VLF chorus and electron fluxes observed by Van Allen Probes, we investigate the efficiency of non-linear processes for acceleration of electrons to MeV energies. We find through subpacket analysis of chorus waveforms that electrons with initial energy 100s keV - 3 MeV can be accelerated by 50 keV - 200 keV in re. . .
Date: 12/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023429 Available at:
More Details
Authors: Li Zhao, Hudson Mary, Kress Brian, and Paral Jan
Title: 3D test-particle simulation of the 17-18 March, 2013 CME-shock driven storm
Abstract: D test-particle simulation of energetic electrons (hundreds of keV to MeV), including both an initially trapped population and continuously injected population, driven by the Lyon-Fedder-Mobarry (LFM) global MHD model coupled with Magnetosphere-Ionosphere Coupler/Solver (MIX) boundary conditions, is performed for the March 17, 2013 storm. The electron trajectories are calculated and weighted using the ESA model for electron flux vs. energy and L. The simulation captures the flux dropout at both GOES-13 and GOES-15 locations after a strong CME-shock arrival which produced a Dst=−132 nT storm, and recovery to the pre-storm value later, consistent with GOES satellite measurements. This study provides the first 3D test-particle simulation combining the trapped and injected populations. The r. . .
Date: 06/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL064627 Available at:
More Details
Authors: Claudepierre S G, O'Brien T P, Blake J B, Fennell J. F., Roeder J. L., et al.
Title: A background correction algorithm for Van Allen Probes MagEIS electron flux measurements
Abstract: We describe an automated computer algorithm designed to remove background contamination from the Van Allen Probes MagEIS electron flux measurements. We provide a detailed description of the algorithm with illustrative examples from on-orbit data. We find two primary sources of background contamination in the MagEIS electron data: inner zone protons and bremsstrahlung X-rays generated by energetic electrons interacting with the spacecraft material. Bremsstrahlung X-rays primarily produce contamination in the lower energy MagEIS electron channels (~30-500 keV) and in regions of geospace where multi-MeV electrons are present. Inner zone protons produce contamination in all MagEIS energy channels at roughly L < 2.5. The background corrected MagEIS electron data produce a more accurate me. . .
Date: 06/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021171 Available at:
More Details
Authors: Zhao Lei, Yu Yiqun, Delzanno Gian Luca, and Jordanova Vania K.
Title: Bounce- and MLT-averaged diffusion coefficients in a physics-based magnetic field geometry obtained from RAM-SCB for the 17 March 2013 storm
Abstract: Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyroresonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the 17 March 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against nondipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field (RAM-SCB), a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field. By applying quasi-linear theory, the bounce- and Magnetic Local Time (MLT)-averaged electron pit. . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020858 Available at:
More Details
Authors: Hwang J., Choi E.-J., Park J.-S., Fok M.-C., Lee D.-Y., et al.
Title: Comprehensive analysis of the flux dropout during 7-8 November 2008 storm using multi-satellites observations and RBE model
Abstract: We investigate an electron flux dropout during a weak storm on 7–8 November 2008, with Dst minimum value being −37 nT. During this period, two clear dropouts were observed on GOES 11 > 2 MeV electrons. We also find a simultaneous dropout in the subrelativistic electrons recorded by Time History of Events and Macroscale Interactions during Substorms probes in the outer radiation belt. Using the Radiation Belt Environment model, we try to reproduce the observed dropout features in both relativistic and subrelativistic electrons. We found that there are local time dependences in the dropout for both observation and simulation in subrelativistic electrons: (1) particle loss begins from nightside and propagates into dayside and (2) resupply starts from near dawn magnetic local time . . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021085 Available at:
More Details
Authors: Su Zhenpeng, Zhu Hui, Xiao Fuliang, Zheng Huinan, Wang Yuming, et al.
Title: Disappearance of plasmaspheric hiss following interplanetary shock
Abstract: Plasmaspheric hiss is one of the important plasma waves controlling radiation belt dynamics. Its spatiotemporal distribution and generation mechanism are presently the object of active research. We here give the first report on the shock-induced disappearance of plasmaspheric hiss observed by the Van Allen Probes on 8 October 2013. This special event exhibits the dramatic variability of plasmaspheric hiss and provides a good opportunity to test its generation mechanisms. The origination of plasmaspheric hiss from plasmatrough chorus is suggested to be an appropriate prerequisite to explain this event. The shock increased the suprathermal electron fluxes, and then the enhanced Landau damping promptly prevented chorus waves from entering the plasmasphere. Subsequently, the shrinking magnetop. . .
Date: 03/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL063906 Available at:
More Details
Authors: Ukhorskiy A Y, Sitnov M I, Millan R M, Kress B T, Fennell J. F., et al.
Title: Global Storm-Time Depletion of the Outer Electron Belt
Abstract: The outer radiation belt consists of relativistic (>0.5 MeV) electrons trapped on closed trajectories around Earth where the magnetic field is nearly dipolar. During increased geomagnetic activity, electron intensities in the belt can vary by ordersof magnitude at different spatial and temporal scale. The main phase of geomagnetic storms often produces deep depletions of electron intensities over broad regions of the outer belt. Previous studies identified three possible processes that can contribute to the main-phase depletions: adiabatic inflation of electron drift orbits caused by the ring current growth, electron loss into the atmosphere, and electron escape through the magnetopause boundary. In this paper we investigate the relative importance of the adiabatic effect and magnetopause . . .
Date: 03/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020645 Available at:
More Details
Authors: Zhou Xu-Zhi, Wang Zi-Han, Zong Qiu-Gang, Claudepierre Seth G., Mann Ian R., et al.
Title: Imprints of impulse-excited hydromagnetic waves on electrons in the Van Allen radiation belts
Abstract: Ultralow frequency electromagnetic oscillations, interpreted as standing hydromagnetic waves in the magnetosphere, are a major energy source that accelerates electrons to relativistic energies in the Van Allen radiation belt. Electrons can rapidly gain energy from the waves when they resonate via a process called drift resonance, which is observationally characterized by energy-dependent phase differences between electron flux and electromagnetic oscillations. Such dependence has been recently observed and interpreted as spacecraft identifications of drift resonance electron acceleration. Here we show that in the initial wave cycles, the observed phase relationship differs from that characteristic of well-developed drift resonance. We further examine the differences and find that they are . . .
Date: 08/2015 Publisher: Geophysical Research Letters Pages: 6199 - 6204 DOI: 10.1002/grl.v42.1510.1002/2015GL064988 Available at:
More Details
Authors: Selesnick R. S.
Title: Measurement of inner radiation belt electrons with kinetic energy above 1 MeV
Abstract: Data from the Proton-Electron Telescope on the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) satellite, taken during 1992–2009, are analyzed for evidence of inner radiation belt electrons with kinetic energy E > 1 MeV. It is found that most of the data from a detector combination with a nominal energy threshold of 1 MeV were, in fact, caused by a chance coincidence response to lower energy electrons or high-energy protons. In particular, there was no detection of inner belt or slot region electrons above 1 MeV following the 2003 Halloween storm injection, though they may have been present. However, by restricting data to a less-stable, low-altitude trapping region, a persistent presence of inner belt electrons in the energy range 1 to 1.6 MeV is demonstrated. Their soft. . .
Date: 10/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: 8339 - 8349 DOI: 10.1002/2015JA021387 Available at:
More Details
Authors: Chen Lunjin, Maldonado Armando, Bortnik Jacob, Thorne Richard M, Li Jinxing, et al.
Title: Nonlinear Bounce Resonances between Magnetosonic Waves and Equatorially Mirroring Electrons
Abstract: Equatorially mirroring energetic electrons pose an interesting scientific problem, since they generally cannot resonate with any known plasma waves and hence cannot be scattered down to lower pitch angles. Observationally it is well known that the fluxof these equatorial particles does not simply continue to build up indefinitely, and so a mechanism must necessarily exist that transports these particles from a equatorial pitch angle of 90 degrees down to lower values. However this mechanism has not been uniquely identified yet. Here, we investigate the mechanism of bounce resonance with equatorial noise (or fast magnetosonic waves). A test particle simulation is used to examine the effects of monochromatic magnetosonic waves on the equatorially mirroring energetic electrons, with a special. . .
Date: 06/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021174 Available at:
More Details
Authors: Kim Jin-Hee, Lee Dae-Young, Cho Jung-Hee, Shin Dae-Kyu, Kim Kyung-Chan, et al.
Title: A prediction model for the global distribution of whistler chorus wave amplitude developed separately for two latitudinal zones
Abstract: Whistler mode chorus waves are considered to play a central role in accelerating and scattering electrons in the outer radiation belt. While in situ measurements are usually limited to the trajectories of a small number of satellites, rigorous theoretical modeling requires a global distribution of chorus wave characteristics. In the present work, by using a large database of chorus wave observations made on the Time History of Events and Macroscale Interactions during Substorms satellites for about 5 years, we develop prediction models for a global distribution of chorus amplitudes. The development is based on two main components: (a) the temporal dependence of average chorus amplitudes determined by correlating with the preceding solar wind and geomagnetic conditions as represented by t. . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020900 Available at:
More Details
Authors: O'Brien T.P.
Title: The activity and radial dependence of anomalous diffusion by pitch-angle scattering on split magnetic drift shells
Abstract: Asymmetries in the magnetospheric magnetic field produce drift shell splitting, which causes the radial (drift shell) invariant to sometimes depend on pitch angle. Where drift shell splitting is significant, pitch angle scattering leads to diffusion in all three invariants of the particle's motion, including cross diffusion. We examine the magnitude of drift shell splitting-related anomalous diffusion for outer zone electrons compared to conventional diffusion in the absence of drift shell splitting. We assume the primary local scattering process is wave-particle interactions with chorus. We find that anomalous radial diffusion can exceed that of conventional drift resonant radial diffusion for particles with energies near 0.1 MeV at all radial distances outside the plasmasphere during q. . .
Date: 12/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020422 Available at:
More Details
Authors: Ozeke Louis G., Mann Ian R., Murphy Kyle R., Rae Jonathan, and Milling David K.
Title: Analytic expressions for ULF wave radiation belt radial diffusion coefficients
Abstract: We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirica. . .
Date: 03/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 1587 - 1605 DOI: 10.1002/2013JA019204 Available at:
More Details
Authors: Mourenas D., Artemyev A. V., Agapitov O.V., Krasnoselskikh V., and Li W
Title: Approximate analytical solutions for the trapped electron distribution due to quasi-linear diffusion by whistler-mode waves
Abstract: The distribution of trapped energetic electrons inside the Earth's radiation belts is the focus of intense studies aiming at better describing the evolution of the space environment in the presence of various disturbances induced by the solar wind or by an enhanced lightning activity. Such studies are usually performed by means of comparisons with full numerical simulations solving the Fokker-Planck quasi-linear diffusion equation for the particle distribution function. Here, we present for the first time approximate but realistic analytical solutions for the electron distribution, which are shown to be in good agreement with exact numerical solutions in situations where resonant scattering of energetic electrons by whistler-mode hiss, lightning-generated or chorus waves, is the dominant p. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020443 Available at:
More Details
Authors: Ozeke Louis G., Mann Ian R., Turner Drew L, Murphy Kyle R., Degeling Alex W., et al.
Title: Modeling cross L shell impacts of magnetopause shadowing and ULF wave radial diffusion in the Van Allen belts
Abstract: We present simulations of the outer electron radiation belt using a new ULF wave-driven radial diffusion model, including empirical representations of loss due to chorus and plasmaspheric hiss. With an outer boundary condition constrained by in situ electron flux observations, we focus on the impacts of magnetopause shadowing and outward radial diffusion in the heart of the radiation belt. Third invariant conserving solutions are combined to simulate the L shell and time dependence of the differential flux at a fixed energy. Results for the geomagnetically quiet year of 2008 demonstrate not only remarkable cross L shell impacts from magnetopause shadowing but also excellent agreement with the in situ observations even though no internal acceleration source is included in the model. Our mod. . .
Date: 10/2014 Publisher: Geophysical Research Letters Pages: 6556 - 6562 DOI: 10.1002/2014GL060787 Available at:
More Details
Authors: Su Zhenpeng, Zhu Hui, Xiao Fuliang, Zheng Huinan, Wang Yuming, et al.
Title: Quantifying the relative contributions of substorm injections and chorus waves to the rapid outward extension of electron radiation belt
Abstract: We study the rapid outward extension of the electron radiation belt on a timescale of several hours during three events observed by RBSP and THEMIS satellites, and particularly quantify the contributions of substorm injections and chorus waves to the electron flux enhancement near the outer boundary of radiation belt. A comprehensive analysis including both observations and simulations is performed for the first event on 26 May 2013. The outer boundary of electron radiation belt moved from L = 5.5 to L > 6.07 over about 6 hours, with up to four orders of magnitude enhancement in the 30 keV-5 MeV electron fluxes at L = 6. The observations show that the substorm injection can cause 100% and 20% of the total subrelativistic (~0.1 MeV) and relativistic (2-5 MeV) electron . . .
Date: 12/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020709 Available at:
More Details
Authors: Li Zhao, Hudson Mary, and Chen Yue
Title: Radial diffusion comparing a THEMIS statistical model with geosynchronous measurements as input
Abstract: The outer boundary energetic electron flux is used as a driver in radial diffusion calculations, and its precise determination is critical to the solution. A new model was proposed recently based on Time History of Events and Macroscale Interactions during Substorms (THEMIS) measurements to express the boundary flux as three fit functions of solar wind parameters in a response window that depend on energy and which solar wind parameter is used: speed, density, or both. The Dartmouth radial diffusion model has been run using Los Alamos National Laboratory (LANL) geosynchronous satellite measurements as the constraint for a one-month interval in July to August 2004, and the calculated phase space density (PSD) is compared with GPS measurements, at magnetic equatorial plane crossings, as a te. . .
Date: 03/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 1863 - 1873 DOI: 10.1002/jgra.v119.310.1002/2013JA019320 Available at:
More Details
Authors: Glauert Sarah A, Horne Richard B, and Meredith Nigel P
Title: Simulating the Earth's radiation belts: Internal acceleration and continuous losses to the magnetopause
Abstract: In the Earth's radiation belts the flux of relativistic electrons is highly variable, sometimes changing by orders of magnitude within a few hours. Since energetic electrons can damage satellites it is important to understand the processes driving these changes and, ultimately, to develop forecasts of the energetic electron population. One approach is to use three-dimensional diffusion models, based on a Fokker-Planck equation. Here we describe a model where the phase-space density is set to zero at the outer L∗ boundary, simulating losses to the magnetopause, using recently published chorus diffusion coefficients for 1.5≤L∗≤10. The value of the phase-space density on the minimum-energy boundary is determined from a recently published, solar wind-dependent, statistical model. Our s. . .
Date: 09/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 7444 - 7463 DOI: 10.1002/jgra.v119.910.1002/2014JA020092 Available at:
More Details
Authors: Zheng Liheng, Chan Anthony A, Albert Jay M, Elkington Scot R, Koller Josef, et al.
Title: Three-dimensional stochastic modeling of radiation belts in adiabatic invariant coordinates
Abstract: A 3-D model for solving the radiation belt diffusion equation in adiabatic invariant coordinates has been developed and tested. The model, named Radbelt Electron Model, obtains a probabilistic solution by solving a set of Itô stochastic differential equations that are mathematically equivalent to the diffusion equation. This method is capable of solving diffusion equations with a full 3-D diffusion tensor, including the radial-local cross diffusion components. The correct form of the boundary condition at equatorial pitch angle α0=90° is also derived. The model is applied to a simulation of the October 2002 storm event. At α0 near 90°, our results are quantitatively consistent with GPS observations of phase space density (PSD) increases, suggesting dominance of radial diffusion; at sm. . .
Date: 09/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 7615 - 7635 DOI: 10.1002/jgra.v119.910.1002/2014JA020127 Available at:
More Details