Biblio

Found 78 results
Filters: Keyword is Radiation belt  [Clear All Filters]
2018
Authors: Zhang X.-J., Mourenas D., Artemyev A. V., Angelopoulos V, and Thorne R M
Title: Electron flux enhancements at L  = 4.2 observed by Global Positioning System satellites: Relationship with solar wind and geomagnetic activity
Abstract: Determining solar wind and geomagnetic activity parameters most favorable to strong electron flux enhancements is an important step towards forecasting radiation belt dynamics. Using electron flux measurements from Global Positioning System satellites at L = 4.2 in 2009‐2016, we seek statistical relationships between flux enhancements at different energies and solar wind dynamic pressure Pdyn, AE, and Kp, from hundreds of events inside and outside the plasmasphere. Most ⩾1 MeV electron flux enhancements occur during non‐storm (or weak storm) times. Flux enhancements of 4 MeV electrons outside the plasmasphere occur during periods of low Pdyn and high AE. We perform superposed epoch analyses of GPS electron fluxes, along with solar wind and geomagnetic indices, 40 keV electron flu. . .
Date: 06/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025497 Available at: http://doi.wiley.com/10.1029/2018JA025497http://onlinelibrary.wiley.com/wol1/doi/10.1029/2018JA025497/fullpdfhttps://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1029%2F2018JA025497
More Details
Authors: He Yihua, Xiao Fuliang, Su Zhenpeng, Zheng Huinan, Yang Chang, et al.
Title: Generation of lower L -shell dayside chorus by energetic electrons from the plasmasheet
Abstract: Currently, the generation mechanism for the lower L‐shell dayside chorus has still remained an open question. Here, we report two storm events: 06‐07 March 2016 and 20‐21 January 2016, when Van Allen Probes observed enhanced dayside chorus with lower and higher wave normal angles (the angles between the wave vector and the geomagnetic field) in the region of L = 3.5‐6.3 and MLT = 5.6‐13.5. Hot and energetic (∼ 1‐100 keV) electrons displayed enhancements in fluxes and anisotropy when they were injected from the plasmasheet and drifted from midnight through dawn toward the dayside. Calculations of chorus local growth rates under different waves normal angles show that the upper cutoff and peak wave frequencies display similar patterns to the observations. Chorus growth rates ma. . .
Date: 09/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2017JA024889 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2017JA024889
More Details
Authors: Kubota Yuko, Omura Yoshiharu, Kletzing Craig, and Reeves Geoff
Title: Generation process of large-amplitude upper band chorus emissions observed by Van Allen Probes
Abstract: We analyze large‐amplitude upper‐band chorus emissions measured near the magnetic equator by the EMFISIS (Electric and Magnetic Field Instrument Suite and Integrated Science) instrument package onboard the Van Allen Probes. In setting up the parameters of source electrons exciting the emissions based on theoretical analyses and observational results measured by the HOPE (Helium Oxygen Proton Electron) instrument, we calculate threshold and optimum amplitudes with the nonlinear wave growth theory. We find that the optimum amplitude is larger than the threshold amplitude obtained in the frequency range of the chorus emissions and that the wave amplitudes grow between the threshold and optimum amplitudes. In the frame of the wave growth process, the nonlinear growth rates are much greater. . .
Date: 04/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2017JA024782 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2017JA024782
More Details
Authors: Hwang Junga, and Yoon Peter H.
Title: High-frequency thermal fluctuations and instabilities in the radiation belt environment
Abstract: This paper overviews the electrostatic and electromagnetic theories of spontaneous emission in magnetized plasma as they relate to measured electric and magnetic field fluctuations in quiet time radiation belt and ring current region. The pervasively detected high‐frequency fluctuations in the upper‐hybrid frequency range as well as the background low‐frequency range spectral profile in the whistler mode range are explained within the context of the spontaneous emission theory. The quasilinear calculation of loss‐cone instability is also carried out in order to validate the assumption of spontaneous emission model. It is shown that the saturated wave amplitudes associated with the upper‐hybrid and multiple‐harmonic cyclotron instability are quite low, indicating that the theore. . .
Date: 10/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025643 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025643
More Details
Authors: Khoo Leng Ying, Li Xinlin, Zhao Hong, Sarris Theodore, Xiang Zheng, et al.
Title: On the Initial Enhancement of Energetic Electrons and the Innermost Plasmapause Locations: CME-Driven Storm Periods
Abstract: Using Van Allen Probes’ observations and established plasmapause location (Lpp) models, we investigate the relationship between the location of the initial enhancement (IE) of energetic electrons and the innermost (among all magnetic local time sectors) Lpp over five intense storm periods. Our study reveals that the IE events for 30 keV to 2MeV electrons always occurred outside of the innermost Lpp. On average, the inner extent of the IE events (LIE) for <800 keV electrons was closer to the innermost Lpp when compared to the LIE for >800 keV electrons that was found consistently at ~1.5 RE outside of the innermost Lpp. The IE of 10s keV electrons was observed before the IE of 100s keV electrons, and the IE of >800 keV electrons was observed on average 12.6±2.3 hours after the occurrence. . .
Date: 10/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026074 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026074
More Details
Authors: Su Zhenpeng, Liu Nigang, Zheng Huinan, Wang Yuming, and Wang Shui
Title: Large-Amplitude Extremely Low Frequency Hiss Waves in Plasmaspheric Plumes
Abstract: N/A
Date: 01/2018 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL076754 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL076754/full
More Details
Authors: Liu Nigang, Su Zhenpeng, Zheng Huinan, Wang Yuming, and Wang Shui
Title: Magnetosonic harmonic falling and rising frequency emissions potentially generated by nonlinear wave-wave interactions in the Van Allen radiation belts
Abstract: Magnetosonic waves play a potentially important role in the complex evolution of the radiation belt electrons. These waves typically appear as discrete emission lines along the proton gyrofrequency harmonics, consistent with the prediction of the local Bernstein mode instability of hot proton ring distributions. Magnetosonic waves are nearly dispersionless particularly at low harmonics and therefore have the roughly unchanged frequency‐time structures during the propagation. On the basis of Van Allen Probes observations, we here present the first report of magnetosonic harmonic falling and rising frequency emissions. They lasted for up to 2 h and occurred primarily in the dayside plasmatrough following intense substorms. These harmonic emission lines were well spaced by the proton gyrofr. . .
Date: 07/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL079232 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL079232
More Details
Authors: Sorathia K. A., Ukhorskiy A Y, Merkin V. G., Fennell J. F., and Claudepierre S G
Title: Modeling the Depletion and Recovery of the Outer Radiation Belt During a Geomagnetic Storm: Combined MHD and Test Particle Simulations
Abstract: During geomagnetic storms the intensities of the outer radiation belt electron population can exhibit dramatic variability. Deep depletions in intensity during the main phase are followed by increases during the recovery phase, often to levels that significantly exceed their pre‐storm values. To study these processes, we simulate the evolution of the outer radiation belt during the 17 March 2013 geomagnetic storm using our newly‐developed radiation belt model (CHIMP) based on test particle and coupled 3D ring current and global MHD simulations, and driven solely with solar wind and F10.7 flux data. Our approach differs from previous work in that we use MHD information to identify regions of strong, bursty, and azimuthally localized Earthward convection in the magnetotail where test. . .
Date: 06/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025506 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025506
More Details
Authors: Selesnick R. S., Baker D N, Kanekal S G, Hoxie V C, and Li X
Title: Modeling the Proton Radiation Belt With Van Allen Probes Relativistic Electron-Proton Telescope Data
Abstract: An empirical model of the proton radiation belt is constructed from data taken during 2013–2017 by the Relativistic Electron-Proton Telescopes on the Van Allen Probes satellites. The model intensity is a function of time, kinetic energy in the range 18–600 MeV, equatorial pitch angle, and L shell of proton guiding centers. Data are selected, on the basis of energy deposits in each of the nine silicon detectors, to reduce background caused by hard proton energy spectra at low L. Instrument response functions are computed by Monte Carlo integration, using simulated proton paths through a simplified structural model, to account for energy loss in shielding material for protons outside the nominal field of view. Overlap of energy channels, their wide angular response, and changing satellit. . .
Date: 01/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024661 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024661/full
More Details
Authors: Gao Zhonglei, Su Zhenpeng, Xiao Fuliang, Summers Danny, Liu Nigang, et al.
Title: Nonlinear coupling between whistler-mode chorus and electron cyclotron harmonic waves in the magnetosphere
Abstract: Electromagnetic whistler‐mode chorus and electrostatic electron cyclotron harmonic (ECH) waves can contribute significantly to auroral electron precipitation and radiation belt electron acceleration. In the past, linear and nonlinear wave‐particle interactions have been proposed to explain the occurrences of these magnetospheric waves. By analyzing Van Allen Probes data, we present here the first evidence for nonlinear coupling between chorus and ECH waves. The sum‐frequency and difference‐frequency interactions produced the ECH sidebands with discrete frequency sweeping structures exactly corresponding to the chorus rising tones. The newly‐generated weak sidebands did not satisfy the original electrostatic wave dispersion relation. After the generation of chorus and normal ECH w. . .
Date: 11/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL080635 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL080635
More Details
Authors: Yuan Zhigang, Liu Kun, Yu Xiongdong, Yao Fei, Huang Shiyong, et al.
Title: Precipitation of radiation belt electrons by EMIC waves with conjugated observations of NOAA and Van Allen satellites
Abstract: In this letter, we present unique conjugated satellite observations of MeV relativistic electron precipitation caused by electromagnetic ion cyclotron (EMIC) waves. On the outer boundary of the plasmasphere, the Van Allen probe observed EMIC waves. At ionospheric altitudes, the NOAA 16 satellite at the footprint of Van Allen probe simultaneously detected obvious flux enhancements for precipitating >MeV radiation belt electrons, but not for precipitating MeV radiation belt electrons. Our result provides a direct magnetic conjugated observational link between in‐situ inner magnetospheric EMIC wav. . .
Date: 11/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL080481 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL080481
More Details
Authors: Liu Nigang, Su Zhenpeng, Zheng Huinan, Wang Yuming, and Wang Shui
Title: Prompt Disappearance and Emergence of Radiation Belt Magnetosonic Waves Induced by Solar Wind Dynamic Pressure Variations
Abstract: Magnetosonic waves are highly oblique whistler mode emissions transferring energy from the ring current protons to the radiation belt electrons in the inner magnetosphere. Here we present the first report of prompt disappearance and emergence of magnetosonic waves induced by the solar wind dynamic pressure variations. The solar wind dynamic pressure reduction caused the magnetosphere expansion, adiabatically decelerated the ring current protons for the Bernstein mode instability, and produced the prompt disappearance of magnetosonic waves. On the contrary, because of the adiabatic acceleration of the ring current protons by the solar wind dynamic pressure enhancement, magnetosonic waves emerged suddenly. In the absence of impulsive injections of hot protons, magnetosonic waves were observa. . .
Date: 01/2018 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL076382 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL076382/full
More Details
Authors: Liu Si, Yan Qi, Yang Chang, Zhou Qinghua, He Zhaoguo, et al.
Title: Quantifying Extremely Rapid Flux Enhancements of Radiation Belt Relativistic Electrons Associated With Radial Diffusion
Abstract: Previous studies have revealed a typical picture that seed electrons are transported inward under the drive of radial diffusion and then accelerated via chorus to relativistic energies. Here we show a potentially different process during the 2–3 October 2013 storm when Van Allen Probes observed extremely rapid (by about 50 times in 2 h) flux enhancements of relativistic (1.8–3.4 MeV) electrons but without distinct chorus at lower L-shells. Meanwhile, Time History of Events and Macroscale Interactions during Substorms satellites simultaneously measured enhanced chorus and fluxes of energetic (∼100–300 keV) seed electrons at higher L-shells. Numerical calculations show that chorus can efficiently accelerate seed electrons at L ∼ 8.3. Then radial diffusion further increased the phas. . .
Date: 02/2018 Publisher: Geophysical Research Letters Pages: 1262 - 1270 DOI: 10.1002/grl.v45.310.1002/2017GL076513 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL076513/full
More Details
Authors: Kurita S., Miyoshi Y, Shiokawa K., Higashio N., Mitani T., et al.
Title: Rapid loss of relativistic electrons by EMIC waves in the outer radiation belt observed by Arase, Van Allen Probes, and the PWING ground stations
Abstract: There has been increasing evidence for pitch angle scattering of relativistic electrons by electromagnetic ion cyclotron (EMIC) waves. Theoretical studies have predicted that the loss time scale of MeV electrons by EMIC waves can be very fast, suggesting that MeV electron fluxes rapidly decrease in association with the EMIC wave activity. This study reports on a unique event of MeV electron loss induced by EMIC waves based on Arase, Van Allen Probes, and ground‐based network observations. Arase observed a signature of MeV electron loss by EMIC waves, and the satellite and ground‐based observations constrained spatial‐temporal variations of the EMIC wave activity during the loss event. Multi‐satellite observation of MeV electron fluxes showed that ~2.5 MeV electron fluxes substantia. . .
Date: 11/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL080262 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL080262
More Details
Authors: Lee Jongkil, Kim Kyung-Chan, Giuseppe Romeo, Ukhorskiy Sasha, Sibeck David, et al.
Title: Space Weather Operation at KASI with Van Allen Probes Beacon Signals
Abstract: The Van Allen Probes (VAPs) are the only modern NASA spacecraft broadcasting real-time data on the Earth's radiation belts for space weather operations. Since 2012, the Korea Astronomy and Space Science Institute (KASI) has contributed to the receipt of this data via a 7-m satellite tracking antenna and used these data for space weather operations. An approximately 15-min period is required from measurement to acquisition of Level-1 data. In this paper, we demonstrate the use of VAP data for monitoring space weather conditions at geostationary orbit (GEO) by highlighting the Saint Patrick's Day storm of 2015. During that storm, Probe-A observed a significant increase in the relativistic electron flux at 3 RE. Those electrons diffused outward resulting in a large increase of the electron fl. . .
Date: 01/2018 Publisher: Space Weather DOI: 10.1002/2017SW001726 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017SW001726/full
More Details
Authors: Boyd A.J., Turner D.L., Reeves G.D., Spence H.E., Baker D.N., et al.
Title: What Causes Radiation Belt Enhancements: A Survey of the Van Allen Probes Era
Abstract: We survey radiation belt enhancement events during the Van Allen Probes era to determine what mechanism is the dominant cause of enhancements and where it is most effective. Two primary mechanisms have been proposed: (1) betatron/Fermi acceleration due to the Earthward radial transport of electrons which produces monotonic gradients in phase space density (PSD) and (2) “local acceleration" due to gyro/Landau resonant interaction with electromagnetic waves which produces radially localized, growing peaks in PSD. To differentiate between these processes, we examine radial profiles of PSD in adiabatic coordinates using data from the Van Allen Probes and THEMIS satellites for 80 outer belt enhancement events from October 2012‐April 2017 This study shows that local acceleration is the domin. . .
Date: 05/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL077699 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL077699
More Details
2019
Authors: Zhao H., Baker D N, Li X, Jaynes A. N., and Kanekal S G
Title: The Effects of Geomagnetic Storms and Solar Wind Conditions on the Ultrarelativistic Electron Flux Enhancements
Abstract: Using data from the Relativistic Electron Proton Telescope on the Van Allen Probes, the effects of geomagnetic storms and solar wind conditions on the ultrarelativistic electron (E > ~3 MeV) flux enhancements in the outer radiation belt, especially regarding their energy dependence, are investigated. It is showed that, statistically, more intense geomagnetic storms are indeed more likely to cause flux enhancements of ~1.8‐ to 7.7‐MeV electrons, though large variations exist. As the electron energy gets higher, the probability of flux enhancement gets lower. To shed light on which conditions of the storms are preferred to cause ultrarelativistic electron flux enhancement, detailed superposed epoch analyses of solar wind parameters and geomagnetic indices during moderate and intense stor. . .
Date: 03/2019 Publisher: Journal of Geophysical Research: Space Physics Pages: 1948 - 1965 DOI: 10.1029/2018JA026257 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026257
More Details
Authors: Zhao Wanli, Liu Si, Zhang Sai, Zhou Qinghua, Yang Chang, et al.
Title: Global Occurrences of Auroral Kilometric Radiation Related to Suprathermal Electrons in Radiation Belts
Abstract: Auroral kilometric radiation (AKR) can potentially produce serious damage to space‐borne systems by accelerating trapped radiation belt electrons to relativistic energies. Here we examine the global occurrences of AKR emissions in radiation belts based on Van Allen Probes observations from 1 October 2012 to 31 December 2016. The statistical results (1,848 events in total) show that AKR covers a broad region of L= 3–6.5 and 00–24 magnetic local time (MLT), with a higher occurrence on the nightside (20–24 MLT and 00–04 MLT) within L= 5–6.5. All the AKR events are observed to be accompanied with suprathermal (∼1 keV) electron flux enhancements. During active geomagnetic periods, both AKR occurrences and electron injections tend to be more distinct, and AKR emission extends to th. . .
Date: 07/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083944 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083944
More Details
Authors: Chen Yaru, Zhou Qinghua, He Yihua, Yang Chang, Liu Si, et al.
Title: Global occurrences of electrostatic electron cyclotron harmonic waves associated with radiation belt electron distributions
Abstract: Electrostatic electron cyclotron harmonic (ECH) waves can yield diffuse aurora primarily at higher L‐shells by driving efficient precipitation loss of plasma sheet electrons. Here using the Van Allen Probes high resolution data, we examine in detail the global occurrences of ECH waves during the period from October 1, 2012 to June 30, 2017 and find that there are totally 419 events of enhanced ECH waves. The statistical results demonstrate that ECH waves can be present over a broad region of L=4‐6 and 00‐24 MLT, with a higher occurrence in the region of L=5‐6 and 06‐19 MLT. The electron phase space density exhibits a distinct ring distribution (∂f/∂v⊥ >0) with the peak energy around a few keV. Both ECH wave events and the electron ring distributions are closely related and . . .
Date: 04/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL082668 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082668
More Details
Authors: Ozeke L. G., Mann I. R., Claudepierre S G, Henderson M., Morley S. K., et al.
Title: The March 2015 Superstorm Revisited: Phase Space Density Profiles and Fast ULF Wave Diffusive Transport
Abstract: We present the temporal evolution of electron Phase Space Density (PSD) in the outer radiation belt during the intense March 2015 geomagnetic storm. Comparing observed PSD profiles as a function of L* at fixed first, M, and second, K, adiabatic invariants with those produced by simulations is critical for determining the physical processes responsible for the outer radiation belt dynamics. Here we show that the bulk of the accelerated and enhanced outer radiation belt population consists of electrons with K < 0.17 G1/2Re. For these electrons, the observed PSD versus L* profiles during the recovery phase of the storm have a positive radial gradient. We compare the observed temporal evolution of the PSD profiles during the recovery phase with those produced by radial diffusion simulations dr. . .
Date: 01/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026326 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026326
More Details
Authors: Yoon Peter H., Hwang Junga, Kim Hyangpyo, and Seough Jungjoon
Title: Quasi Thermal Noise Spectroscopy for Van Allen Probes
Abstract: Quasi thermal fluctuations in the Langmuir/upper‐hybrid frequency range are pervasively observed in space plasmas including the radiation belt and the ring current region of inner magnetosphere as well as the solar wind. The quasi thermal noise spectroscopy may be employed in order to determine the electron density and temperature as well as to diagnose the properties of energetic electrons when direct measurements are not available. However, when employing the technique, one must carefully take the spacecraft orientation into account. The present paper takes the upper‐hybrid and multiple harmonic—or (n + 1/2)fce—emissions measured by the Van Allen Probes as an example in order to illustrate how the spacecraft antenna geometrical factor can be incorporated into the theoretical . . .
Date: 04/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026460 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026460
More Details
Authors: Dai Guyue, Su Zhenpeng, Liu Nigang, Wang Bin, Zheng Huinan, et al.
Title: Quenching of Equatorial Magnetosonic Waves by Substorm Proton Injections
Abstract: Near equatorial (fast) magnetosonic waves, characterized by high magnetic compressibility, are whistler‐mode emissions destabilized by proton shell/ring distributions. In the past, substorm proton injections are widely known to intensify magnetosonic waves in the inner magnetosphere. Here we report the unexpected observations by the Van Allen Probes of the magnetosonic wave quenching associated with the substorm proton injections under both high‐ and low‐density conditions. The enhanced proton thermal pressure distorted the background magnetic field configuration and the cold plasma density distribution. The reduced phase velocities locally allowed the weak growth or even damping of magnetosonic waves. Meanwhile, the spatially irregularly varying refractive indices might suppress the. . .
Date: 05/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL082944 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082944
More Details
Authors: Nakamura S., Omura Y., Kletzing C., and Baker D N
Title: Rapid Precipitation of Relativistic Electron by EMIC Rising‐Tone Emissions Observed by the Van Allen Probes
Abstract: On 23 February 2014, Van Allen Probes sensors observed quite strong electromagnetic ion cyclotron (EMIC) waves in the outer dayside magnetosphere. The maximum amplitude was more than 14 nT, comparable to 7% of the magnitude of the ambient magnetic field. The EMIC waves consisted of a series of coherent rising tone emissions. Rising tones are excited sporadically by energetic protons. At the same time, the probes detected drastic fluctuations in fluxes of MeV electrons. It was found that the electron fluxes decreased by more than 30% during the 1 min following the observation of each EMIC rising tone emissions. Furthermore, it is concluded that the flux reduction is a nonadiabatic (irreversible) process since holes in the particle flux levels appear as drift echoes with energy dispersion. W. . .
Date: May-08-2020 Publisher: Journal of Geophysical Research: Space Physics Pages: 6701 - 6714 DOI: 10.1029/2019JA026772 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026772
More Details
Authors: Claudepierre S G, O'Brien T P, Looper M D, Blake J B, Fennell J. F., et al.
Title: A Revised Look at Relativistic Electrons in the Earth's Inner Radiation Zone and Slot Region
Abstract: We describe a new, more accurate procedure for estimating and removing inner zone background contamination from Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) radiation belt measurements. This new procedure is based on the underlying assumption that the primary source of background contamination in the electron measurements at L shells less than three, energetic inner belt protons, is relatively stable. Since a magnetic spectrometer can readily distinguish between foreground electrons and background signals, we are able to exploit the proton stability to construct a model of the background contamination in each MagEIS detector by only considering times when the measurements are known to be background dominated. We demonstrate, for relativistic electron measurements in the inn. . .
Date: 01/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026349 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026349
More Details
Authors: Tyler E., Breneman A., Cattell C., Wygant J, Thaller S., et al.
Title: Statistical occurrence and distribution of high amplitude whistler-mode waves in the outer radiation belt
Abstract: We present the first statistical analysis with continuous data coverage and non‐averaged amplitudes of the prevalence and distribution of high‐amplitude (> 5 mV/m) whistler‐mode waves in the outer radiation belt using 5 years of Van Allen Probes data. These waves are most common above L=3.5 and between MLT of 0‐7 where they are present 1‐4% of the time. During high geomagnetic activity, high‐amplitude whistler‐mode wave occurrence rises above 30% in some regions. During these active times the plasmasphere erodes to lower L and high‐amplitude waves are observed at all L outside of it, with the highest occurrence at low L (3.5‐4) in the pre‐dawn sector. These results have important implications for modeling radiation belt particle interactions with chorus, as large‐amp. . .
Date: 02/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL082292 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082292
More Details
Authors: Selesnick R. S., and Albert J M
Title: Variability of the Proton Radiation Belt
Abstract: Significant steady but slow variability of radiation belt proton intensity, in the energy range ∼19–200 MeV and for L<2.4, has been observed in an empirical model derived from data taken by Van Allen Probes during 2013–2019. It is compared to predictions of a theoretical model based on measured initial and boundary conditions. Two aspects of the variability are considered in detail and require adjustments to model parameters. Observed inward transport of proton intensity maxima near L=1.9 and associated increasing intensity are caused in the model by inward radial diffusion from an external source while conserving the first two adiabatic invariants. The diffusion coefficient is constrained by these observations and is required to have increased near the start of 2015 by a factor ∼2. . .
Date: 07/2019 Publisher: Journal of Geophysical Research: Space Physics Pages: 5516 - 5527 DOI: 10.1029/2019JA026754 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026754
More Details
Authors: Pandya Megha, Veenadhari B., Ebihara Y., Kanekal S.G., and Baker D.N.
Title: Variation of Radiation belt electron flux during CME and CIR driven geomagnetic storms: Van Allen Probes observations
Abstract: Relativistic electron flux responses in the inner magnetosphere are investigated for 28 magnetic storms driven by Corotating Interaction Region (CIR) and 27 magnetic storms driven by Coronal Mass Ejection (CME), using data from the Relativistic Electron‐Proton Telescope (REPT) instrument on board Van‐Allen Probes from Oct‐2012 to May‐2017. In this present study we analyze the role of CIRs and CMEs in electron dynamics by sorting the electron fluxes in terms of averaged solar wind parameters, L‐values, and energies. The major outcomes from our study are: (i) At L = 3 and E = 3.4 MeV, for >70% cases the electron flux remains stable, while at L = 5, for ~82% cases it changes with the geomagnetic conditions. (ii) At L = 5, ~53% of the CIR storms and 30% of the CME storms show electro. . .
Date: 07/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026771 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026771
More Details
2020
Authors: Liu Nigang, Su Zhenpeng, Gao Zhonglei, Zheng Huinan, Wang Yuming, et al.
Title: Comprehensive Observations of Substorm‐Enhanced Plasmaspheric Hiss Generation, Propagation, and Dissipation
Abstract: Plasmaspheric hiss is an important whistler‐mode emission shaping the Van Allen radiation belt environment. How the plasmaspheric hiss waves are generated, propagate, and dissipate remains under intense debate. With the five spacecraft of Van Allen Probes, Exploration of energization and Radiation in Geospace (Arase), and Geostationary Operational Environmental Satellites missions at widely spaced locations, we present here the first comprehensive observations of hiss waves growing from the substorm‐injected electron instability, spreading within the plasmasphere, and dissipating over a large spatial scale. During substorms, hot electrons were injected energy‐dispersively into the plasmasphere near the dawnside and, probably through a combination of linear and nonlinear cyclotron res. . .
Date: 01/2020 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL086040 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL086040
More Details

Pages