Biblio

Found 105 results
Filters: First Letter Of Keyword is D  [Clear All Filters]
2017
Authors: Chen X.-R., Zong Q.-G., Zhou X.-Z., Blake Bernard, Wygant J. R., et al.
Title: Van Allen Probes observation of a 360° phase shift in the flux modulation of injected electrons by ULF waves
Abstract: We present Van Allen Probe observation of drift-resonance interaction between energetic electrons and ultralow frequency (ULF) waves on 29 October 2013. Oscillations in electron flux were observed at the period of ∼450 s, which is also the dominant period of the observed ULF magnetic pulsations. The phase shift of the electron fluxes (∼50 to 150 keV) across the estimated resonant energy (∼104 keV) is ∼360°. This phase relationship is different from the characteristic 180° phase shift as expected from the drift-resonance theory. We speculate that the additional 180° phase difference arises from the inversion of electron phase space density (PSD) gradient, which in turn is caused by the drift motion of the substorm injected electrons. This PSD gradient adjusts the characteristic p. . .
Date: 02/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL071252 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016GL071252/full
More Details
Authors: Woodroffe J. R., Jordanova V K, Funsten H O, Streltsov A. V., Bengtson M. T., et al.
Title: Van Allen Probes observations of structured whistler mode activity and coincident electron Landau acceleration inside a remnant plasmaspheric plume
Abstract: We present observations from the Van Allen Probes spacecraft that identify a region of intense whistler mode activity within a large density enhancement outside of the plasmasphere. We speculate that this density enhancement is part of a remnant plasmaspheric plume, with the observed wave being driven by a weakly anisotropic electron injection that drifted into the plume and became nonlinearly unstable to whistler emission. Particle measurements indicate that a significant fraction of thermal (<100 eV) electrons within the plume were subject to Landau acceleration by these waves, an effect that is naturally explained by whistler emission within a gradient and high-density ducting inside a density enhancement.
Date: 03/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA022219 Available at: http://doi.wiley.com/10.1002/2015JA022219
More Details
Authors: Woodroffe J. R., Jordanova V. K., Funsten H. O., Streltsov A. V., Bengtson M. T., et al.
Title: Van Allen Probes Observations of Structured Whistler-mode Activity and Coincident Electron Landau Acceleration Inside a Remnant Plasmaspheric Plume
Abstract: We present observations from the Van Allen Probes spacecraft that identify an region of intense whistler-mode activity within a large density enhancement outside of the plasmasphere. We speculate that this density enhancement is part of a remnant plasmaspheric plume, with the observed wave being driven by a weakly anisotropic electron injection that drifted into the plume and became non-linearly unstable to whistler emission. Particle measurements indicate that a significant fraction of thermal (<100 eV) electrons within the plume were subject to Landau acceleration by these waves, an effect that is naturally explained by whistler emission within a gradient and high-density ducting inside a density enhancement.
Date: 02/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA022219 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2015JA022219/full
More Details
2016
Authors: Zhou Xu-Zhi, Wang Zi-Han, Zong Qiu-Gang, Rankin Robert, Kivelson Margaret G., et al.
Title: Charged particle behavior in the growth and damping stages of ultralow frequency waves: theory and Van Allen Probes observations
Abstract: Ultralow frequency (ULF) electromagnetic waves in Earth's magnetosphere can accelerate charged particles via a process called drift resonance. In the conventional drift-resonance theory, a default assumption is that the wave growth rate is time-independent, positive, and extremely small. However, this is not the case for ULF waves in the real magnetosphere. The ULF waves must have experienced an earlier growth stage when their energy was taken from external and/or internal sources, and as time proceeds the waves have to be damped with a negative growth rate. Therefore, a more generalized theory on particle behavior during different stages of ULF wave evolution is required. In this paper, we introduce a time-dependent imaginary wave frequency to accommodate the growth and damping of the wav. . .
Date: 03/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: n/a - n/a DOI: 10.1002/2016JA022447 Available at: http://doi.wiley.com/10.1002/2016JA022447http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2016JA022447
More Details
Authors: Liu Jiang, Angelopoulos V, Zhang Xiao-Jia, Turner D. L., Gabrielse C., et al.
Title: Dipolarizing flux bundles in the cis-geosynchronous magnetosphere: relationship between electric fields and energetic particle injections
Abstract: Dipolarizing flux bundles (DFBs) are small flux tubes (typically < 3 RE in XGSM and YGSM) in the nightside magnetosphere that have magnetic field more dipolar than the background. Although DFBs are known to accelerate particles, creating energetic particle injections outside geosynchronous orbit (trans-GEO), the nature of the acceleration mechanism and the importance of DFBs in generating injections inside geosynchronous orbit (cis-GEO) are unclear. Our statistical study of cis-GEO DFBs using data from the Van Allen Probes reveals that just like trans-GEO DFBs, cis-GEO DFBs occur most often in the pre-midnight sector, but their occurrence rate is ~1/3 that of trans-GEO DFBs. Half the cis-GEO DFBs are accompanied by an energetic particle injection and have an electric field three times stro. . .
Date: 01/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021691 Available at: http://doi.wiley.com/10.1002/2015JA021691
More Details
Authors: Liu Jiang, Angelopoulos V, Zhang Xiao-Jia, Turner D. L., Gabrielse C., et al.
Title: Dipolarizing flux bundles in the cis-geosynchronous magnetosphere: relationship between electric fields and energetic particle injections
Abstract: Dipolarizing flux bundles (DFBs) are small flux tubes (typically < 3 RE in XGSM and YGSM) in the nightside magnetosphere that have magnetic field more dipolar than the background. Although DFBs are known to accelerate particles, creating energetic particle injections outside geosynchronous orbit (trans-GEO), the nature of the acceleration mechanism and the importance of DFBs in generating injections inside geosynchronous orbit (cis-GEO) are unclear. Our statistical study of cis-GEO DFBs using data from the Van Allen Probes reveals that just like trans-GEO DFBs, cis-GEO DFBs occur most often in the pre-midnight sector, but their occurrence rate is ~1/3 that of trans-GEO DFBs. Half the cis-GEO DFBs are accompanied by an energetic particle injection and have an electric field three times stro. . .
Date: 01/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021691 Available at: http://doi.wiley.com/10.1002/2015JA021691
More Details
Authors: Ferradas C. P., Zhang J.-C., Spence H E, Kistler L. M., Larsen B A, et al.
Title: Drift paths of ions composing multiple-nose spectral structures near the inner edge of the plasma sheet
Abstract: We present a case study of the H+, He+, and O+ multiple-nose structures observed by the Helium, Oxygen, Proton, and Electron instrument on board Van Allen Probe A over one complete orbit on 28 September 2013. Nose structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift in the highly dynamic environment of the inner magnetosphere. We find that the multiple noses are intrinsically associated with variations in the solar wind. Backward ion drift path tracings show new details of the drift trajectories of these ions; i.e., multiple noses are formed by ions with a short drift time from the assumed source location to the inner region and whose trajectories (1) encircle the Earth different number of times or (2) encircle the Earth equal number of. . .
Date: 11/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL071359 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016GL071359/full
More Details
Authors: Hao Y. X., Zong Q.-G., Zhou X.-Z., Fu S. Y., Rankin R, et al.
Title: Electron dropout echoes induced by interplanetary shock: Van Allen Probes observations
Abstract: On 23 November 2012, a sudden dropout of the relativistic electron flux was observed after an interplanetary shock arrival. The dropout peaks at ∼1MeV and more than 80% of the electrons disappeared from the drift shell. Van Allen twin Probes observed a sharp electron flux dropout with clear energy dispersion signals. The repeating flux dropout and recovery signatures, or “dropout echoes”, constitute a new phenomenon referred to as a “drifting electron dropout” with a limited initial spatial range. The azimuthal range of the dropout is estimated to be on the duskside, from ∼1300 to 0100 LT. We conclude that the shock-induced electron dropout is not caused by the magnetopause shadowing. The dropout and consequent echoes suggest that the radial migration of relativistic electrons . . .
Date: 05/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL069140 Available at: http://doi.wiley.com/10.1002/2016GL069140h
More Details
Authors: Su Yi-Jiun, Selesnick Richard S., and Blake J B
Title: Formation of the inner electron radiation belt by enhanced large-scale electric fields
Abstract: A two-dimensional bounce-averaged test particle code was developed to examine trapped electron trajectories during geomagnetic storms with the assumption of conservation of the first and second adiabatic invariants. The March 2013 storm was selected as an example because the geomagnetic activity Kp index sharply increased from 2 + to 7− at 6:00 UT on 17 March. Electron measurements with energies between 37 and 460 keV from the Magnetic Electron Ion Spectrometer (MagEIS) instrument onboard Van Allen Probes (VAP) are used as initial conditions prior to the storm onset and served to validate test particle simulations during the storm. Simulation results help to interpret the observed electron injection as nondiffusive radial transport over a short distance in the inner belt and slot. . .
Date: 08/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022881 Available at: http://doi.wiley.com/10.1002/2016JA022881
More Details
Authors: Yu J., Li L.Y., Cao J. B., Reeves G D, Baker D N, et al.
Title: The influences of solar wind pressure and interplanetary magnetic field on global magnetic field and outer radiation belt electrons
Abstract: Using the Van Allen Probe in-situ measured magnetic field and electron data, we examine the solar wind dynamic pressure and interplanetary magnetic field (IMF) effects on global magnetic field and outer radiation belt relativistic electrons (≥1.8 MeV). The dynamic pressure enhancements (>2nPa) cause the dayside magnetic field increase and the nightside magnetic field reduction, whereas the large southward IMFs (Bz-IMF < -2nT) mainly lead to the decrease of the nightside magnetic field. In the dayside increased magnetic field region (MLT ~ 06:00 - 18:00, and L > 4), the pitch angles of relativistic electrons are mainly pancake distributions with a flux peak around 90o (corresponding anisotropic index A > 0.1), and the higher-energy electrons have stronger pancake distrib. . .
Date: 06/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL069029 Available at: http://doi.wiley.com/10.1002/2016GL069029
More Details
Authors: Yu J., Li L.Y., Cao J. B., Reeves G D, Baker D N, et al.
Title: The influences of solar wind pressure and interplanetary magnetic field on global magnetic field and outer radiation belt electrons
Abstract: Using the Van Allen Probe in-situ measured magnetic field and electron data, we examine the solar wind dynamic pressure and interplanetary magnetic field (IMF) effects on global magnetic field and outer radiation belt relativistic electrons (≥1.8 MeV). The dynamic pressure enhancements (>2nPa) cause the dayside magnetic field increase and the nightside magnetic field reduction, whereas the large southward IMFs (Bz-IMF < -2nT) mainly lead to the decrease of the nightside magnetic field. In the dayside increased magnetic field region (MLT ~ 06:00 - 18:00, and L > 4), the pitch angles of relativistic electrons are mainly pancake distributions with a flux peak around 90o (corresponding anisotropic index A > 0.1), and the higher-energy electrons have stronger pancake distrib. . .
Date: 06/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL069029 Available at: http://doi.wiley.com/10.1002/2016GL069029
More Details
Authors: Reiff P. H., Daou A. G., Sazykin S. Y., Nakamura R, Hairston M. R., et al.
Title: Multispacecraft Observations and Modeling of the June 22/23, 2015 Geomagnetic Storm
Abstract: The magnetic storm of June 22-23, 2015 was one of the largest in the current solar cycle. We present in situ observations from the Magnetospheric Multiscale Mission (MMS) and the Van Allen Probes (VAP) in the magnetotail, field-aligned currents from AMPERE, and ionospheric flow data from DMSP. Our real-time space weather alert system sent out a “red alert”, correctly predicting Kp indices greater than 8. We show strong outflow of ionospheric Oxygen, dipolarizations in the MMS magnetometer data, and dropouts in the particle fluxes seen by the MMS FPI instrument suite. At ionospheric altitudes, the AMPERE data show highly variable currents exceeding 20 MA. We present numerical simulations with the BATS-R-US global magnetohydrodynamic (MHD) model linked with the Rice Convection Model (RCM. . .
Date: 05/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL069154 Available at: http://doi.wiley.com/10.1002/2016GL069154
More Details
Authors: Yu Yiqun, Jordanova Vania K., Ridley Aaron J., Albert Jay M, Horne Richard B, et al.
Title: A new ionospheric electron precipitation module coupled with RAM-SCB within the geospace general circulation model
Abstract: Electron precipitation down to the atmosphere due to wave-particle scattering in the magnetosphere contributes significantly to the auroral ionospheric conductivity. In order to obtain the auroral conductivity in global MHD models that are incapable of capturing kinetic physics in the magnetosphere, MHD parameters are often used to estimate electron precipitation flux for the conductivity calculation. Such an MHD approach, however, lacks self-consistency in representing the magnetosphere-ionosphere coupling processes. In this study we improve the coupling processes in global models with a more physical method. We calculate the physics-based electron precipitation from the ring current and map it to the ionospheric altitude for solving the ionospheric electrodynamics. In particular, we use . . .
Date: 09/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022585 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA022585/full
More Details
Authors: Aryan Homayon, Sibeck David, Balikhin Michael, Agapitov Oleksiy, and Kletzing Craig
Title: Observation of chorus waves by the Van Allen Probes: Dependence on solar wind parameters and scale size
Abstract: Highly energetic electrons in the Earth's Van Allen radiation belts can cause serious damage to spacecraft electronic systems and affect the atmospheric composition if they precipitate into the upper atmosphere. Whistler mode chorus waves have attracted significant attention in recent decades for their crucial role in the acceleration and loss of energetic electrons that ultimately change the dynamics of the radiation belts. The distribution of these waves in the inner magnetosphere is commonly presented as a function of geomagnetic activity. However, geomagnetic indices are nonspecific parameters that are compiled from imperfectly covered ground based measurements. The present study uses wave data from the two Van Allen Probes to present the distribution of lower band chorus waves not onl. . .
Date: 08/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: 7608 - 7621 DOI: 10.1002/jgra.v121.810.1002/2016JA022775 Available at: http://doi.wiley.com/10.1002/2016JA022775
More Details
Authors: Zhang X.-J., Li W, Thorne R M, Angelopoulos V, Ma Q, et al.
Title: Physical mechanism causing rapid changes in ultrarelativistic electron pitch angle distributions right after a shock arrival: Evaluation of an electron dropout event
Abstract: Three mechanisms have been proposed to explain relativistic electron flux depletions (dropouts) in the Earth's outer radiation belt during storm times: adiabatic expansion of electron drift shells due to a decrease in magnetic field strength, magnetopause shadowing and subsequent outward radial diffusion, and precipitation into the atmosphere (driven by EMIC wave scattering). Which mechanism predominates in causing electron dropouts commonly observed in the outer radiation belt is still debatable. In the present study, we evaluate the physical mechanism that may be primarily responsible for causing the sudden change in relativistic electron pitch angle distributions during a dropout event observed by Van Allen Probes during the main phase of the 27 February 2014 storm. During this event, t. . .
Date: 09/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022517 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA022517/abstract
More Details
Authors: Zhang X.-J., Li W, Thorne R M, Angelopoulos V, Ma Q, et al.
Title: Physical mechanism causing rapid changes in ultrarelativistic electron pitch angle distributions right after a shock arrival: Evaluation of an electron dropout event
Abstract: Three mechanisms have been proposed to explain relativistic electron flux depletions (dropouts) in the Earth's outer radiation belt during storm times: adiabatic expansion of electron drift shells due to a decrease in magnetic field strength, magnetopause shadowing and subsequent outward radial diffusion, and precipitation into the atmosphere (driven by EMIC wave scattering). Which mechanism predominates in causing electron dropouts commonly observed in the outer radiation belt is still debatable. In the present study, we evaluate the physical mechanism that may be primarily responsible for causing the sudden change in relativistic electron pitch angle distributions during a dropout event observed by Van Allen Probes during the main phase of the 27 February 2014 storm. During this event, t. . .
Date: 09/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022517 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA022517/abstract
More Details
Authors: Zhao H., Li X, Baker D N, Claudepierre S G, Fennell J. F., et al.
Title: Ring current electron dynamics during geomagnetic storms based on the Van Allen Probes measurements
Abstract: Based on comprehensive measurements from Helium, Oxygen, Proton, and Electron Mass Spectrometer Ion Spectrometer, Relativistic Electron-Proton Telescope, and Radiation Belt Storm Probes Ion Composition Experiment instruments on the Van Allen Probes, comparative studies of ring current electrons and ions are performed and the role of energetic electrons in the ring current dynamics is investigated. The deep injections of tens to hundreds of keV electrons and tens of keV protons into the inner magnetosphere occur frequently; after the injections the electrons decay slowly in the inner belt but protons in the low L region decay very fast. Intriguing similarities between lower energy protons and higher-energy electrons are also found. The evolution of ring current electron and ion energy densi. . .
Date: 04/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: 3333 - 3346 DOI: 10.1002/2016JA022358 Available at: http://doi.wiley.com/10.1002/2016JA022358
More Details
Authors: Godinez Humberto C, Yu Yiqun, Lawrence Eric, Henderson Michael G., Larsen Brian A, et al.
Title: Ring Current Pressure Estimation with RAM-SCB using Data Assimilation and Van Allen Probe Flux Data
Abstract: Capturing and subsequently modeling the influence of tail plasma injections on the inner magnetosphere is important for understanding the formation and evolution of the ring current. In this study, the ring current distribution is estimated with the Ring Current-Atmosphere Interactions Model with Self-Consistent Magnetic field (RAM-SCB) using, for the first time, data assimilation techniques and particle flux data from the Van Allen Probes. The state of the ring current within the RAM-SCB model is corrected via an ensemble based data assimilation technique by using proton flux from one of the Van Allen Probes, to capture the enhancement of the ring current following an isolated substorm event on July 18, 2013. The results show significant improvement in the estimation of the ring current p. . .
Date: 11/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL071646 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016GL071646/full
More Details
Authors: Chen X.-R., Zong Q.-G., Zhou X.-Z., Blake Bernard, Wygant John R., et al.
Title: Van Allen Probes observation of a 360° phase shift in the flux modulation of injected electrons by ULF waves
Abstract: We present Van Allen Probe observation of drift-resonance interaction between energetic electrons and ultra-low frequency (ULF) waves on October 29, 2013. Oscillations in electron flux were observed at the period of ∼450s, which is also the dominant period of the observed ULF magnetic pulsations. The phase shift of the electron fluxes (∼50 to 150 keV) across the estimated resonant energy (∼104 keV) is ∼360°. This phase relationship is different from the characteristic 180° phase shift as expected from the drift-resonance theory. We speculate that the additional 180° phase difference arises from the inversion of electron phase space density (PSD) gradient, which in turn is caused by the drift motion of the substorm injected electrons. This PSD gradient adjusts the characteristic . . .
Date: 12/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL071252 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016GL071252/full
More Details
Authors: Cho J.-H., Lee D.-Y., Noh S.-J., Shin D.-K., Hwang J., et al.
Title: Van Allen Probes Observations of Electromagnetic Ion Cyclotron Waves Triggered by Enhanced Solar Wind Dynamic Pressure
Abstract: Magnetospheric compression due to impact of enhanced solar wind dynamic pressure Pdyn has long been considered as one of the generation mechanisms of electromagnetic ion cyclotron (EMIC) waves. With the Van Allen Probe-A observations, we identify three EMIC wave events that are triggered by Pdyn enhancements under prolonged northward IMF quiet time preconditions. They are in contrast to one another in a few aspects. Event 1 occurs in the middle of continuously increasing Pdyn while Van Allen Probe-A is located outside the plasmapause at post-midnight and near the equator (magnetic latitude (MLAT) ~ -3o). Event 2 occurs by a sharp Pdyn pulse impact while Van Allen Probe-A is located inside the plasmapause in the dawn sector and rather away from the equator (MLAT ~ 12o). Event 3 is c. . .
Date: 09/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022841 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA022841/full
More Details
Authors: é M., Keika K, Kletzing C A, Spence H E, Smith C W, et al.
Title: Van Allen Probes observations of magnetic field dipolarization and its associated O + flux variations in the inner magnetosphere at L  < 6.6
Abstract: We investigate magnetic field dipolarization in the inner magnetosphere and its associated ion flux variations, using the magnetic field and energetic ion flux data acquired by the Van Allen Probes. From a study of 74 events that appeared at L = 4.5–6.6 between 1 October 2012 and 31 October 2013, we reveal the following characteristics of the dipolarization in the inner magnetosphere: (1) its timescale is approximately 5 min, (2) it is accompanied by strong magnetic fluctuations that have a dominant frequency close to the O+ gyrofrequency, (3) ion fluxes at 20–50 keV are simultaneously enhanced with larger magnitudes for O+ than for H+, (4) after a few minutes of the dipolarization, the flux enhancement at 0.1–5 keV appears with a clear energy-dispersion signature only for . . .
Date: 07/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022549 Available at: http://doi.wiley.com/10.1002/2016JA022549
More Details
Authors: Sigsbee K., Kletzing C A, Smith C W, MacDowall Robert, Spence Harlan, et al.
Title: Van Allen Probes, THEMIS, GOES, and Cluster Observations of EMIC waves, ULF pulsations, and an electron flux dropout
Abstract: We examined an electron flux dropout during the 12–14 November 2012 geomagnetic storm using observations from seven spacecraft: the two Van Allen Probes, THEMIS-A (P5), Cluster 2, and Geostationary Operational Environmental Satellite (GOES) 13, 14, and 15. The electron fluxes for energies greater than 2.0 MeV observed by GOES 13, 14, and 15 at geosynchronous orbit and by the Van Allen Probes remained at or near instrumental background levels for more than 24 hours from 12–14 November. For energies of 0.8 MeV, the GOES satellites observed two shorter intervals of reduced electron fluxes. The first interval of reduced 0.8 MeV electron fluxes on 12–13 November was associated with an interplanetary shock and a sudden impulse. Cluster, THEMIS, and GOES observed intense He+ EMIC wa. . .
Date: 01/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020877 Available at: http://doi.wiley.com/10.1002/2014JA020877
More Details
2015
Authors: Zhao Lei, Yu Yiqun, Delzanno Gian Luca, and Jordanova Vania K.
Title: Bounce- and MLT-averaged diffusion coefficients in a physics-based magnetic field geometry obtained from RAM-SCB for the 17 March 2013 storm
Abstract: Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyroresonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the 17 March 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against nondipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field (RAM-SCB), a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field. By applying quasi-linear theory, the bounce- and Magnetic Local Time (MLT)-averaged electron pit. . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020858 Available at: http://doi.wiley.com/10.1002/2014JA020858
More Details
Authors: Zhang Q. -H., Lockwood M., Foster J. C., Zhang S. -R., Zhang B. -C., et al.
Title: Direct observations of the full Dungey convection cycle in the polar ionosphere for southward interplanetary magnetic field conditions
Abstract: Tracking the formation and full evolution of polar cap ionization patches in the polar ionosphere, we directly observe the full Dungey convection cycle for southward interplanetary magnetic field (IMF) conditions. This enables us to study how the Dungey cycle influences the patches’ evolution. The patches were initially segmented from the dayside storm enhanced density plume (SED) at the equatorward edge of the cusp, by the expansion and contraction of the polar cap boundary (PCB) due to pulsed dayside magnetopause reconnection, as indicated by in-situ THEMIS observations. Convection led to the patches entering the polar cap and being transported antisunward, whilst being continuously monitored by the globally distributed arrays of GPS receivers and SuperDARN radars. Changes in convectio. . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021172 Available at: http://doi.wiley.com/10.1002/2015JA021172
More Details
Authors: Khazanov G. V., Tripathi A. K., Sibeck D., Himwich E., Glocer A., et al.
Title: Electron distribution function formation in regions of diffuse aurora
Abstract: The precipitation of high-energy magnetospheric electrons (E ∼ 600 eV–10 KeV) in the diffuse aurora contributes significant energy flux into the Earth's ionosphere. To fully understand the formation of this flux at the upper ionospheric boundary, ∼700–800 km, it is important to consider the coupled ionosphere-magnetosphere system. In the diffuse aurora, precipitating electrons initially injected from the plasma sheet via wave-particle interaction processes degrade in the atmosphere toward lower energies and produce secondary electrons via impact ionization of the neutral atmosphere. These precipitating electrons can be additionally reflected upward from the two conjugate ionospheres, leading to a series of multiple reflections through the magnetosphere. These reflections greatly in. . .
Date: 11/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: 9891–9915 DOI: 10.1002/2015JA021728 Available at: http://doi.wiley.com/10.1002/2015JA021728http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021728
More Details
Authors: Wang Chengrui, Rankin Robert, and Zong Qiugang
Title: Fast damping of ultralow frequency waves excited by interplanetary shocks in the magnetosphere
Abstract: Analysis of Cluster spacecraft data shows that intense ultralow frequency (ULF) waves in the inner magnetosphere can be excited by the impact of interplanetary shocks and solar wind dynamic pressure variations. The observations reveal that such waves can be damped away rapidly in a few tens of minutes. Here we examine mechanisms of ULF wave damping for two interplanetary shocks observed by Cluster on 7 November 2004 and 30 August 2001. The mechanisms considered are ionospheric joule heating, Landau damping, and waveguide energy propagation. It is shown that Landau damping provides the dominant ULF wave damping for the shock events of interest. It is further demonstrated that damping is caused by drift-bounce resonance with ions in the energy range of a few keV. Landau damping is shown to b. . .
Date: 03/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020761 Available at: http://doi.wiley.com/10.1002/2014JA020761
More Details
Authors: Ukhorskiy A Y, Sitnov M I, Millan R M, Kress B T, Fennell J. F., et al.
Title: Global Storm-Time Depletion of the Outer Electron Belt
Abstract: The outer radiation belt consists of relativistic (>0.5 MeV) electrons trapped on closed trajectories around Earth where the magnetic field is nearly dipolar. During increased geomagnetic activity, electron intensities in the belt can vary by ordersof magnitude at different spatial and temporal scale. The main phase of geomagnetic storms often produces deep depletions of electron intensities over broad regions of the outer belt. Previous studies identified three possible processes that can contribute to the main-phase depletions: adiabatic inflation of electron drift orbits caused by the ring current growth, electron loss into the atmosphere, and electron escape through the magnetopause boundary. In this paper we investigate the relative importance of the adiabatic effect and magnetopause . . .
Date: 03/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020645 Available at: http://doi.wiley.com/10.1002/2014JA020645
More Details
Authors: Zhou Xu-Zhi, Wang Zi-Han, Zong Qiu-Gang, Claudepierre Seth G., Mann Ian R., et al.
Title: Imprints of impulse-excited hydromagnetic waves on electrons in the Van Allen radiation belts
Abstract: Ultralow frequency electromagnetic oscillations, interpreted as standing hydromagnetic waves in the magnetosphere, are a major energy source that accelerates electrons to relativistic energies in the Van Allen radiation belt. Electrons can rapidly gain energy from the waves when they resonate via a process called drift resonance, which is observationally characterized by energy-dependent phase differences between electron flux and electromagnetic oscillations. Such dependence has been recently observed and interpreted as spacecraft identifications of drift resonance electron acceleration. Here we show that in the initial wave cycles, the observed phase relationship differs from that characteristic of well-developed drift resonance. We further examine the differences and find that they are . . .
Date: 08/2015 Publisher: Geophysical Research Letters Pages: 6199 - 6204 DOI: 10.1002/grl.v42.1510.1002/2015GL064988 Available at: http://doi.wiley.com/10.1002/grl.v42.15http://doi.wiley.com/10.1002/2015GL064988
More Details
Authors: Skov Tamitha Mulligan, Fennell Joseph F., Roeder James L., Blake Bernard, and Claudepierre Seth G.
Title: Internal Charging Hazards in Near-Earth Space During Solar Cycle 24 Maximum: Van Allen Probes Measurements
Abstract: The Van Allen Probes mission provides an unprecedented opportunity to make detailed measurements of electrons and protons in the inner magnetosphere during the weak solar maximum period of cycle 24. The MagEIS suite of sensors measures energy spectra and fluxes of charged particles in the space environment. The calculations show that these fluxes result in electron deposition rates high enough to cause internal charging. We use omnidirectional fluxes of electrons and protons to calculate the dose under varying materials and thicknesses of shielding. We show examples of charge deposition rates during the times of nominal and high levels of penetrating fluxes in the inner magnetosphere covering the period from the beginning of 2013 through mid-2014. These charge deposition rates are related . . .
Date: 09/2015 Publisher: IEEE Transactions on Plasma Science Pages: 3070 - 3074 DOI: 10.1109/TPS.2015.2468214 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7247811http://xplorestaging.ieee.org/ielx7/27/7247791/07247811.pdf?arnumber=7247811
More Details
Authors: Vasko I. Y., Agapitov O. V., Mozer F, Artemyev A. V., and Jovanovic D.
Title: Magnetic field depression within electron holes
Abstract: We analyze electron holes that are spikes of the electrostatic field (up to 500 mV/m) observed by Van Allen Probes in the outer radiation belt. The unexpected feature is the magnetic field depression of about several tens of picotesla within many of the spikes. The earlier observations showed amplification or negligible perturbations of the magnetic field within the electron holes. We suggest that the observed magnetic field depression is due to the diamagnetic current of hot and highly anisotropic population of electrons trapped within the electron holes. The required trapped population should have a density up to 65% of the background plasma density, a temperature up to several keV, and a temperature anisotropy T⊥/T∥∼2. We argue that the observed electron holes could be generated. . .
Date: 04/2015 Publisher: Geophysical Research Letters Pages: 2123 - 2129 DOI: 10.1002/2015GL063370 Available at: http://doi.wiley.com/10.1002/2015GL063370
More Details
Authors: Ali Ashar F., Elkington Scot R, Tu Weichao, Ozeke Louis G., Chan Anthony A, et al.
Title: Magnetic field power spectra and magnetic radial diffusion coefficients using CRRES magnetometer data
Abstract: We used the fluxgate magnetometer data from Combined Release and Radiation Effects Satellite (CRRES) to estimate the power spectral density (PSD) of the compressional component of the geomagnetic field in the ∼1 mHz to ∼8 mHz range. We conclude that magnetic wave power is generally higher in the noon sector for quiet times with no significant difference between the dawn, dusk, and the midnight sectors. However, during high Kp activity, the noon sector is not necessarily dominant anymore. The magnetic PSDs have a very distinct dependence on Kp. In addition, the PSDs appear to have a weak dependence on McIlwain parameter L with power slightly increasing as L increases. The magnetic wave PSDs are used along with the Fei et al. (2006) formulation to compute inline image as a function of L . . .
Date: 02/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020419 Available at: http://doi.wiley.com/10.1002/2014JA020419
More Details
Authors: Zhima Zeren, Chen Lunjin, Fu Huishan, Cao Jinbin, Horne Richard, et al.
Title: Observations of discrete magnetosonic waves off the magnetic equator
Abstract: Fast mode magnetosonic waves are typically confined close to the magnetic equator and exhibit harmonic structures at multiples of the local, equatorial proton cyclotron frequency. We report observations of magnetosonic waves well off the equator at geomagnetic latitudes from −16.5°to −17.9° and L shell ~2.7–4.6. The observed waves exhibit discrete spectral structures with multiple frequency spacings. The predominant frequency spacings are ~6 and 9 Hz, neither of which is equal to the local proton cyclotron frequency. Backward ray tracing simulations show that the feature of multiple frequency spacings is caused by propagation from two spatially narrow equatorial source regions located at L ≈ 4.2 and 3.7. The equatorial proton cyclotron frequencies at those two locations mat. . .
Date: 12/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL066255 Available at: http://doi.wiley.com/10.1002/2015GL066255http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015GL066255
More Details
Authors: Chi P. J., and Le G.
Title: Observations of magnetospheric high-m poloidal waves by ST-5 satellites in low Earth orbit during geomagnetically quiet times
Abstract: The poloidal waves with large azimuthal wavenumbers (m~100) in the magnetosphere are known to be generated by drift or drift bounce resonance with energetic ring current particles, and these waves may play a role in modulating the energetic particles in the inner magnetosphere. When examining the magnetic field data collected by the NASA ST-5 satellites in the low Earth orbit, Le et al. [2011] discovered many wave events with frequencies of 30–200 mHz (in the Pc 2–3 band), and they proposed that these waves should in fact be Doppler-shifted high-m poloidal waves in the magnetosphere with frequencies at only a few mHz (in the Pc 5 band). Using a new method that examines the differences in wave phase detected by the three ST-5 satellites, we confirm that the frequencies in the Earth fram. . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021145 Available at: http://doi.wiley.com/10.1002/2015JA021145
More Details
Authors: Kurita Satoshi, Kadokura Akira, Miyoshi Yoshizumi, Morioka Akira, Sato Yuka, et al.
Title: Relativistic electron precipitations in association with diffuse aurora: Conjugate observation of SAMPEX and the all sky TV camera at Syowa Station
Abstract: It has been believed that whistler mode waves can cause relativistic electron precipitations. It has been also pointed out that pitch angle scattering of ~keV electrons by whistler mode waves results in diffuse auroras. Thus, it is natural to expect relativistic electron precipitations associated with diffuse auroras. Based on a conjugate observation between the SAMPEX spacecraft and the all-sky TV camera at Syowa Station, we report, for the first time, a case in which relativistic electron precipitations are associated with diffuse aurora. The SAMPEX observation shows that the precipitations of >1 MeV electrons are well accompanied with those of >150 and >400 keV electrons. This indicates that electrons in the energy range from several keV to >1 MeV precipitate into the atmosphere s. . .
Date: 06/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL064564 Available at: http://doi.wiley.com/10.1002/2015GL064564
More Details
Authors: Wang Dedong, Yuan Zhigang, Yu Xiongdong, Deng Xiaohua, Zhou Meng, et al.
Title: Statistical characteristic of EMIC waves: Van Allen Probe observations
Abstract: Utilizing the data from the magnetometer instrument which is a part of the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrument suite onboard the Van Allen Probe A from Sep. 2012 to Apr. 2014, when the apogee of the satellite has passed all the MLT sectors, we obtain the statistical distribution characteristic of EMIC waves in the inner magnetosphere over all local times from L=3 to L=6. Compared with the previous statistical results about EMIC waves, the occurrence rates of EMIC waves distribute relatively uniform in the MLT sectors in lower L-shells. On the other hand, in higher L-shells, there are indeed some peaks of the occurrence rate for the EMIC waves, especially in the noon, dusk and night sectors. EMIC waves appear at lower L-shells in the dawn. . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021089 Available at: http://doi.wiley.com/10.1002/2015JA021089
More Details
Authors: Vasko I. Y., Agapitov O. V., Mozer F S, and Artemyev A. V.
Title: Thermal electron acceleration by electric field spikes in the outer radiation belt: Generation of field-aligned pitch angle distributions
Abstract: Van Allen Probes observations in the outer radiation belt have demonstrated an abundance of electrostatic electron-acoustic double layers (DL). DLs are frequently accompanied by field-aligned (bidirectional) pitch angle distributions (PAD) of electrons with energies from hundred eVs up to several keV. We perform numerical simulations of the DL interaction with thermal electrons making use of the test particle approach. DL parameters assumed in the simulations are adopted from observations. We show that DLs accelerate thermal electrons parallel to the magnetic field via the electrostatic Fermi mechanism, i.e., due to reflections from DL potential humps. The electron energy gain is larger for larger DL scalar potential amplitudes and higher propagation velocities. In addition to the Fermi me. . .
Date: 10/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021644 Available at: http://doi.wiley.com/10.1002/2015JA021644http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021644
More Details
Authors: Palin L., Jacquey C., Opgenoorth H., Connors M., Sergeev V., et al.
Title: Three-dimensional current systems and ionospheric effects associated with small dipolarisation fronts
Abstract: We present a case study of eight successive plasma sheet (PS) activations (usually referred to as bursty bulk flows or dipolarization fronts ) associated with small individual inline image increases on 31 March 2009 (0200–0900 UT), observed by the THEMIS mission. This series of events happens during very quiet solar wind conditions, over a period of 7 hours preceding a substorm onset at 1230 UT. The amplitude of the dipolarizations increases with time. The low-amplitude dipolarization fronts are associated with few (1 or 2) rapid flux transport events (RFT, Eh > 2mV/m), whereas the large-amplitude ones encompass many more RFT events. All PS activations are associated with small and localized substorm current wedge (SCW) like current system signatures, which seems to be the consequenc. . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021040 Available at: http://doi.wiley.com/10.1002/2015JA021040
More Details
Authors: Ni Binbin, Zou Zhengyang, Gu Xudong, Zhou Chen, Thorne Richard M, et al.
Title: Variability of the pitch angle distribution of radiation belt ultra-relativistic electrons during and following intense geomagnetic storms: Van Allen Probes observations
Abstract: Fifteen months of pitch angle resolved Van Allen Probes REPT measurements of differential electron flux are analyzed to investigate the characteristic variability of the pitch angle distribution (PAD) of radiation belt ultra-relativistic (>2 MeV) electrons during storm conditions and during the long-term post-storm decay. By modeling the ultra-relativistic electron pitch angle distribution as sinn α, where α is the equatorial pitch angle, we examine the spatio-temporal variations of the n-value. The results show that in general n-values increase with the level of geomagnetic activity. In principle, ultra-relativistic electrons respond to geomagnetic storms by becoming more peaked at 90° pitch angle with n-values of 2–3 as a supportive signature of chorus acceleration outside the pla. . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021065 Available at: http://doi.wiley.com/10.1002/2015JA021065
More Details
2014
Authors: O'Brien T.P.
Title: The activity and radial dependence of anomalous diffusion by pitch-angle scattering on split magnetic drift shells
Abstract: Asymmetries in the magnetospheric magnetic field produce drift shell splitting, which causes the radial (drift shell) invariant to sometimes depend on pitch angle. Where drift shell splitting is significant, pitch angle scattering leads to diffusion in all three invariants of the particle's motion, including cross diffusion. We examine the magnitude of drift shell splitting-related anomalous diffusion for outer zone electrons compared to conventional diffusion in the absence of drift shell splitting. We assume the primary local scattering process is wave-particle interactions with chorus. We find that anomalous radial diffusion can exceed that of conventional drift resonant radial diffusion for particles with energies near 0.1 MeV at all radial distances outside the plasmasphere during q. . .
Date: 12/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020422 Available at: http://doi.wiley.com/10.1002/2014JA020422
More Details
Authors: O'Brien T.P.
Title: The activity and radial dependence of anomalous diffusion by pitch-angle scattering on split magnetic drift shells
Abstract: Asymmetries in the magnetospheric magnetic field produce drift shell splitting, which causes the radial (drift shell) invariant to sometimes depend on pitch angle. Where drift shell splitting is significant, pitch angle scattering leads to diffusion in all three invariants of the particle's motion, including cross diffusion. We examine the magnitude of drift shell splitting-related anomalous diffusion for outer zone electrons compared to conventional diffusion in the absence of drift shell splitting. We assume the primary local scattering process is wave-particle interactions with chorus. We find that anomalous radial diffusion can exceed that of conventional drift resonant radial diffusion for particles with energies near 0.1 MeV at all radial distances outside the plasmasphere during q. . .
Date: 12/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020422 Available at: http://doi.wiley.com/10.1002/2014JA020422
More Details
Authors: Ozeke Louis G., Mann Ian R., Murphy Kyle R., Rae Jonathan, and Milling David K.
Title: Analytic expressions for ULF wave radiation belt radial diffusion coefficients
Abstract: We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirica. . .
Date: 03/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 1587 - 1605 DOI: 10.1002/2013JA019204 Available at: http://doi.wiley.com/10.1002/2013JA019204
More Details
Authors: Turner D. L., Angelopoulos V, Morley S. K., Henderson M G, Reeves G D, et al.
Title: On the cause and extent of outer radiation belt losses during the 30 September 2012 dropout event
Abstract: On 30 September 2012, a flux “dropout” occurred throughout Earth's outer electron radiation belt during the main phase of a strong geomagnetic storm. Using eight spacecraft from NASA's Time History of Events and Macroscale Interactions during Substorms (THEMIS) and Van Allen Probes missions and NOAA's Geostationary Operational Environmental Satellites constellation, we examined the full extent and timescales of the dropout based on particle energy, equatorial pitch angle, radial distance, and species. We calculated phase space densities of relativistic electrons, in adiabatic invariant coordinates, which revealed that loss processes during the dropout were > 90% effective throughout the majority of the outer belt and the plasmapause played a key role in limiting the spatial extent . . .
Date: 03/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 1530 - 1540 DOI: 10.1002/2013JA019446 Available at: http://doi.wiley.com/10.1002/2013JA019446
More Details
Authors: Lui A. T. Y., Mitchell D G, and Lanzerotti L J
Title: Comparison of Energetic Electron Intensities Outside and Inside the Radiation Belts
Abstract: The intensities of energetic electrons (~25 – 800 keV) outside and inside Earth's radiation belts are reported using measurements from THEMIS and Van Allen Probes during non-geomagnetic storm periods. Three intervals of current disruption/dipolarization events in August, 2013 were selected for comparison. The following results are obtained. (1) Phase space densities (PSDs) for the equatorially mirroring electron population at three values of the first adiabatic invariant (20, 70, and 200 MeV/G) at the outer radiation belt boundary are found to be one to three orders of magnitude higher than values measured just inside the radiation belt. (2) There is indication that substorm activity leads to PSD increases inside L = 5.5 in less than 1 hr. (3) Evidence for progressive inward tr. . .
Date: 08/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020049 Available at: http://doi.wiley.com/10.1002/2014JA020049
More Details
Authors: Battiston Roberto
Title: Cosmic ray physics in space: from fundamental physics to applications
Abstract: One hundred years after their discovery by Victor Hess, cosmic rays are nowadays subject of intense research from space-based detectors, able to perform for the first time high precision measurement of their composition and spectra as well as of isotropy and time variability. On May 2011, the alpha magnetic spectrometer (AMS-02) has been installed on the International Space Station, to measure with high accuracy the cosmic ray properties searching for rare events which could be an indication of the nature of dark matter or presence of nuclear antimatter. AMS-02 is the result of nearly two decades of effort of an international collaboration, involving in particular Chinese and Italian scientists, to design and build a state of the art detector capable to perform high precision cosmic rays m. . .
Date: 03/2014 Publisher: Rendiconti Lincei Pages: 97 - 105 DOI: 10.1007/s12210-014-0293-1 Available at: http://link.springer.com/10.1007/s12210-014-0293-1http://link.springer.com/content/pdf/10.1007/s12210-014-0293-1
More Details
Authors: Whittaker Ian C., Rodger Craig J., Clilverd Mark A., and Sauvaud é
Title: The effects and correction of the geometric factor for the POES/MEPED electron flux instrument using a multisatellite comparison
Abstract: Measurements from the Polar-Orbiting Environmental Satellite (POES) Medium Energy Proton and Electron Detector (MEPED) instrument are widely used in studies into radiation belt dynamics and atmospheric coupling. However, this instrument has been shown to have a complex energy-dependent response to incident particle fluxes, with the additional possibility of low-energy protons contaminating the electron fluxes. We test the recent Monte Carlo theoretical simulation of the instrument by comparing the responses against observations from an independent experimental data set. Our study examines the reported geometric factors for the MEPED electron flux instrument against the high-energy resolution Instrument for Detecting Particles (IDPs) on the Detection of Electromagnetic Emissions Transmitted. . .
Date: 08/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 6386 - 6404 DOI: 10.1002/2014JA020021 Available at: http://doi.wiley.com/10.1002/2014JA020021
More Details
Authors: Ripoll J.-F., Albert J M, and Cunningham G. S.
Title: Electron lifetimes from narrowband wave-particle interactions within the plasmasphere
Abstract: This paper is devoted to the systematic study of electron lifetimes from narrowband wave-particle interactions within the plasmasphere. It relies on a new formulation of the bounce-averaged quasi-linear pitch angle diffusion coefficients parameterized by a single frequency, ω, and wave normal angle, θ. We first show that the diffusion coefficients scale with ω/Ωce, where Ωce is the equatorial electron gyrofrequency, and that maximal pitch angle diffusion occurs along the line α0 = π/2–θ, where α0 is the equatorial pitch angle. Lifetimes are computed for L shell values in the range [1.5, 3.5] and energies, E, in the range [0.1, 6] MeV as a function of frequency and wave normal angle. The maximal pitch angle associated with a given lifetime is also given, revealing the frequen. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020217 Available at: http://doi.wiley.com/10.1002/2014JA020217
More Details
Authors: McKenna-Lawlor Susan
Title: Feasibility study of astronaut standardized career dose limits in LEO and the outlook for BLEO
Abstract: Cosmic Study Group SG 3.19/1.10 was established in February 2013 under the aegis of the International Academy of Astronautics to consider and compare the dose limits adopted by various space agencies for astronauts in Low Earth Orbit. A preliminary definition of the limits that might later be adopted by crews exploring Beyond Low Earth Orbit was, in addition, to be made. The present paper presents preliminary results of the study reported at a Symposium held in Turin by the Academy in July 2013. First, an account is provided of exposure limits assigned by various partner space agencies to those of their astronauts that work aboard the International Space Station. Then, gaps in the scientific and technical information required to safely implement human missions beyond the shielding provided. . .
Date: 11/2014 Publisher: Acta Astronautica Pages: 565 - 573 DOI: 10.1016/j.actaastro.2014.07.011 Available at: http://linkinghub.elsevier.com/retrieve/pii/S0094576514002549http://api.elsevier.com/content/article/PII:S0094576514002549?httpAccept=text/xmlhttp://api.elsevier.com/content/article/PII:S0094576514002549?httpAccept=text/plain
More Details
Authors: Fu H. S., Cao J. B., Zhima Z., Khotyaintsev Y. V., Angelopoulos V, et al.
Title: First observation of rising-tone magnetosonic waves
Abstract: Magnetosonic (MS) waves are linearly polarized emissions confined near the magnetic equator with wave normal angle near 90° and frequency below the lower hybrid frequency. Such waves, also termed equatorial noise, were traditionally known to be “temporally continuous” in their time-frequency spectrogram. Here we show for the first time that MS waves actually have discrete wave elements with rising-tone features in their spectrogram. The frequency sweep rate of MS waves, ~1 Hz/s, is between that of chorus and electromagnetic ion cyclotron (EMIC) waves. For the two events we analyzed, MS waves occur outside the plasmapause and cannot penetrate into the plasmasphere; their power is smaller than that of chorus. We suggest that the rising-tone feature of MS waves is a consequence of nonl. . .
Date: 11/2014 Publisher: Geophysical Research Letters Pages: 7419 - 7426 DOI: 10.1002/grl.v41.2110.1002/2014GL061867 Available at: http://doi.wiley.com/10.1002/grl.v41.21http://doi.wiley.com/10.1002/2014GL061867
More Details
Authors: Khazanov G., Sibeck D., Tel'nikhin A., and Kronberg T.
Title: Relativistic electron precipitation events driven by electromagnetic ion-cyclotron waves
Abstract: We adopt a canonical approach to describe the stochastic motion of relativistic belt electrons and their scattering into the loss cone by nonlinear EMIC waves. The estimated rate of scattering is sufficient to account for the rate and intensity of bursty electron precipitation. This interaction is shown to result in particle scattering into the loss cone, forming ∼10 s microbursts of precipitating electrons. These dynamics can account for the statistical correlations between processes of energization, pitch angle scattering, and relativistic electron precipitation events, that are manifested on large temporal scales of the order of the diffusion time ∼tens of minutes.
Date: 08/2014 Publisher: Physics of Plasmas Pages: 082901 DOI: 10.1063/1.4892185 Available at: http://scitation.aip.org/content/aip/journal/pop/21/8/10.1063/1.4892185
More Details
Authors: Lesley Mellinee
Title: “Spacecraft Reveals Recent Geological Activity on the Moon”
Abstract: Through a content analysis of 200 “tweets,” this study was an exploration into the distinct features of text posted to NASA's Twitter site and the potential for these posts to serve as more engaging scientific text than traditional textbooks for adolescents. Results of the content analysis indicated the tweets and linked texts on the NASA Twitter site were constructed primarily as a form of “adapted primary literature” where science texts created by scientists for other scientists are presented in a slightly modified format for the general public. Further, the content analysis revealed the majority of text posted was designed to cultivate scientific knowledge for novices. Findings of the content analysis are presented and implications for teaching scientific literacies to adolescen. . .
Date: 02/2014 Publisher: Journal of Adolescent & Adult Literacy Pages: 377 - 385 DOI: 10.1002/jaal.2014.57.issue-510.1002/jaal.258 Available at: http://doi.wiley.com/10.1002/jaal.2014.57.issue-5http://doi.wiley.com/10.1002/jaal.258
More Details

Pages