Biblio

Found 879 results
Journal Article
Authors: Sakaguchi Kaori, Nagatsuma Tsutomu, Reeves Geoffrey, and Spence Harlan E.
Title: Prediction of MeV electron fluxes throughout the outer radiation belt using multivariate autoregressive models
Abstract: The Van Allen radiation belts surrounding the Earth are filled with MeV-energy electrons. This region poses ionizing radiation risks for spacecraft that operate within it, including those in geostationary (GEO) and medium Earth orbit (MEO). To provide alerts of electron flux enhancements, sixteen prediction models of the electron log-flux variation throughout the equatorial outer radiation belt as a function of the McIlwain L parameter were developed using the multivariate autoregressive model and Kalman filter. Measurements of omni-directional 2.3 MeV electron flux from the Van Allen Probes mission as well as >2 MeV electrons from the GOES-15 spacecraft were used as the predictors. Model explanatory parameters were selected from solar wind parameters, the electron log-flux at GEO, and geo. . .
Date: 11/2015 Publisher: Space Weather Pages: n/a - n/a DOI: 10.1002/2015SW001254 Available at: http://doi.wiley.com/10.1002/2015SW001254http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015SW001254
More Details
Authors: Simms Laura E., Pilipenko Viacheslav, Engebretson Mark J, Reeves Geoffrey D, Smith A. J., et al.
Title: Prediction of relativistic electron flux at geostationary orbit following storms: Multiple regression analysis
Abstract: Many solar wind and magnetosphere parameters correlate with relativistic electron flux following storms. These include relativistic electron flux before the storm; seed electron flux; solar wind velocity and number density (and their variation); interplanetary magnetic field Bz, AE and Kp indices; and ultra low frequency (ULF) and very low frequency (VLF) wave power. However, as all these variables are intercorrelated, we use multiple regression analyses to determine which are the most predictive of flux when other variables are controlled. Using 219 storms (1992–2002), we obtained hourly averaged electron fluxes for outer radiation belt relativistic electrons (>1.5 MeV) and seed electrons (100 keV) from Los Alamos National Laboratory spacecraft (geosynchronous orbit). For each storm. . .
Date: 09/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 7297 - 7318 DOI: 10.1002/jgra.v119.910.1002/2014JA019955 Available at: http://doi.wiley.com/10.1002/jgra.v119.9http://doi.wiley.com/10.1002/2014JA019955
More Details
Authors: Fox N J, and Burch J L
Title: Preface
Abstract: The discovery of the Van Allen radiation belts in 1958, starting with data from the United States’ first two successful orbiting spacecraft, Explorer’s I and III, was an astounding surprise and represented the founding of what we now call magnetospheric physics. Since that time many spacecraft have traversed the radiation belts en route to other more distant parts of Earth’s magnetosphere and other worlds beyond Earth’s orbit. After initial climatological models of the radiation belts were obtained in the 1960’s and early 1970’s, the main concern about them was the ability of spacecraft and astronauts to survive their intense radiation. And yet there were true scientific mysteries to be solved, glimpses of which came in the 1990’s from spacecraft like CRRES and SAMPEX. CRRES . . .
Date: 11/2013 Publisher: Space Science Reviews Pages: 1-2 DOI: 10.1007/s11214-013-9997-2 Available at: http://link.springer.com/article/10.1007%2Fs11214-013-9997-2
More Details
Authors: Chen Yue, Reeves Geoffrey D, Fu Xiangrong, and Henderson Michael
Title: PreMevE: New Predictive Model for Megaelectron-volt Electrons inside Earth's Outer Radiation Belt
Abstract: This work designs a new model called PreMevE to predict storm‐time distributions of relativistic electrons within Earth's outer radiation belt. This model takes advantage of the cross‐energy, ‐L‐shell, and –pitch‐angle coherence associated with wave‐electron resonant interactions, ingests observations from belt boundaries—mainly by NOAA POES in low‐Earth‐orbits (LEOs), and provides high‐fidelity nowcast (multiple‐hour prediction) and forecast (> ~1 day) of MeV electron fluxes over L‐shells between 2.8‐7 through linear prediction filters. PreMevE can not only reliably anticipate incoming enhancements of MeV electrons during storms with at least 1‐day forewarning time, but also accurately specify the evolving event‐specific electron spatial distributions after. . .
Date: 02/2019 Publisher: Space Weather DOI: 10.1029/2018SW002095 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018SW002095
More Details
Authors: Kanekal S G, Baker D N, Fennell J. F., Jones A., Schiller Q., et al.
Title: Prompt acceleration of magnetospheric electrons to ultrarelativistic energies by the 17 March 2015 interplanetary shock
Abstract: Trapped electrons in Earth's outer Van Allen radiation belt are influenced profoundly by solar phenomena such as high-speed solar wind streams, coronal mass ejections (CME), and interplanetary (IP) shocks. In particular, strong IP shocks compress the magnetosphere suddenly and result in rapid energization of electrons within minutes. It is believed that the electric fields induced by the rapid change in the geomagnetic field are responsible for the energization. During the latter part of March 2015, a CME impact led to the most powerful geomagnetic storm (minimum Dst = −223 nT at 17 March, 23 UT) observed not only during the Van Allen Probe era but also the entire preceding decade. Magnetospheric response in the outer radiation belt eventually resulted in elevated levels of energized ele. . .
Date: 08/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: 7622 - 7635 DOI: 10.1002/2016JA022596 Available at: http://doi.wiley.com/10.1002/2016JA022596
More Details
Authors: Liu Nigang, Su Zhenpeng, Zheng Huinan, Wang Yuming, and Wang Shui
Title: Prompt Disappearance and Emergence of Radiation Belt Magnetosonic Waves Induced by Solar Wind Dynamic Pressure Variations
Abstract: Magnetosonic waves are highly oblique whistler mode emissions transferring energy from the ring current protons to the radiation belt electrons in the inner magnetosphere. Here we present the first report of prompt disappearance and emergence of magnetosonic waves induced by the solar wind dynamic pressure variations. The solar wind dynamic pressure reduction caused the magnetosphere expansion, adiabatically decelerated the ring current protons for the Bernstein mode instability, and produced the prompt disappearance of magnetosonic waves. On the contrary, because of the adiabatic acceleration of the ring current protons by the solar wind dynamic pressure enhancement, magnetosonic waves emerged suddenly. In the absence of impulsive injections of hot protons, magnetosonic waves were observa. . .
Date: 01/2018 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL076382 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL076382/full
More Details
Authors: Foster J. C., Erickson P. J., Baker D N, Claudepierre S G, Kletzing C A, et al.
Title: Prompt energization of relativistic and highly relativistic electrons during a substorm interval: Van Allen Probes observations
Abstract: On 17 March 2013, a large magnetic storm significantly depleted the multi-MeV radiation belt. We present multi-instrument observations from the Van Allen Probes spacecraft Radiation Belt Storm Probe A and Radiation Belt Storm Probe B at ~6 Re in the midnight sector magnetosphere and from ground-based ionospheric sensors during a substorm dipolarization followed by rapid reenergization of multi-MeV electrons. A 50% increase in magnetic field magnitude occurred simultaneously with dramatic increases in 100 keV electron fluxes and a 100 times increase in VLF wave intensity. The 100 keV electrons and intense VLF waves provide a seed population and energy source for subsequent radiation belt enhancements. Highly relativistic (>2 MeV) electron fluxes increased immediately at L* ~ 4.5. . .
Date: 01/2014 Publisher: Geophysical Research Letters Pages: 20 - 25 DOI: 10.1002/2013GL058438 Available at: http://doi.wiley.com/10.1002/2013GL058438
More Details
Authors: Schiller Q., Kanekal S G, Jian L. K., Li X, Jones A., et al.
Title: Prompt injections of highly relativistic electrons induced by interplanetary shocks: A statistical study of Van Allen Probes observations
Abstract: We conduct a statistical study on the sudden response of outer radiation belt electrons due to interplanetary (IP) shocks during the Van Allen Probes era, i.e., 2012 to 2015. Data from the Relativistic Electron-Proton Telescope instrument on board Van Allen Probes are used to investigate the highly relativistic electron response (E > 1.8 MeV) within the first few minutes after shock impact. We investigate the relationship of IP shock parameters, such as Mach number, with the highly relativistic electron response, including spectral properties and radial location of the shock-induced injection. We find that the driving solar wind structure of the shock does not affect occurrence for enhancement events, 25% of IP shocks are associated with prompt energization, and 14% are associated wi. . .
Date: 12/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL071628 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016GL071628/full
More Details
Authors: Yu J., Li L. Y., Cao J. B., Chen L, Wang J., et al.
Title: Propagation characteristics of plasmaspheric hiss: Van Allen Probe observations and global empirical models
Abstract: Based on the Van Allen Probe A observations from 1 October 2012 to 31 December 2014, we develop two empirical models to respectively describe the hiss wave normal angle (WNA) and amplitude variations in the Earth's plasmasphere for different substorm activities. The long-term observations indicate that the plasmaspheric hiss amplitudes on the dayside increase when substorm activity is enhanced (AE index increases), and the dayside hiss amplitudes are greater than the nightside. However, the propagation angles (WNAs) of hiss waves in most regions do not depend strongly on substorm activity, except for the intense substorm-induced increase in WNAs in the nightside low L-region. The propagation angles of plasmaspheric hiss increase with increasing magnetic latitude or decreasing radial distan. . .
Date: 04/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023372 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023372/full
More Details
Authors: Takahashi Kazue, Hartinger Michael D., Malaspina David M., Smith Charles W., Koga Kiyokazu, et al.
Title: Propagation of ULF waves from the upstream region to the midnight sector of the inner magnetosphere
Abstract: Ultralow frequency (ULF) waves generated in the ion foreshock are a well-known source of Pc3-Pc4 waves (7–100 mHz) observed in the dayside magnetosphere. We use data acquired on 10 April 2013 by multiple spacecraft to demonstrate that ULF waves of upstream origin can propagate to the midnight sector of the inner magnetosphere. At 1130–1730 UT on the selected day, the two Van Allen Probes spacecraft and the geostationary ETS-VIII satellite detected compressional 20 to 40 mHz magnetic field oscillations between L ∼ 4 and L ∼ 7 in the midnight sector, along with other spacecraft located closer to noon. Upstream origin of the oscillations is concluded from the wave frequency that matches a theoretical model, globally coherent amplitude modulation, and duskward propagation that is consi. . .
Date: 08/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022958 Available at: http://doi.wiley.com/10.1002/2016JA022958
More Details
Authors: Zhang X.-J., Thorne R., Artemyev A., Mourenas D., Angelopoulos V, et al.
Title: Properties of intense field-aligned lower-band chorus waves: Implications for nonlinear wave-particle interactions
Abstract: Resonant interactions between electrons and chorus waves are responsible for a wide range of phenomena in near‐Earth space (e.g., diffuse aurora, acceleration of MeV electrons, etc.). Although quasi‐linear diffusion is believed to be the primary paradigm for describing such interactions, an increasing number of investigations suggest that nonlinear effects are also important in controlling the rapid dynamics of electrons. However, present models of nonlinear wave‐particle interactions, which have been successfully used to describe individual short‐term events, are not directly applicable for a statistical evaluation of nonlinear effects and the long‐term dynamics of the outer radiation belt, because they lack information on the properties of intense (nonlinearly resonating with e. . .
Date: 06/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025390 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025390
More Details
Authors: Shi Run, Li Wen, Ma Qianli, Green Alex, Kletzing Craig A., et al.
Title: Properties of Whistler Mode Waves in Earth's Plasmasphere and Plumes
Abstract: Whistler mode wave properties inside the plasmasphere and plumes are systematically investigated using 5‐year data from Van Allen Probes. The occurrence and intensity of whistler mode waves in the plasmasphere and plumes exhibit dependences on magnetic local time, L, and AE. Based on the dependence of the wave normal angle and Poynting flux direction on L shell and normalized wave frequency to electron cyclotron frequency (fce), whistler mode waves are categorized into four types. Type I: ~0.5 fce with oblique wave normal angles mostly in plumes; Type II: 0.01–0.5 fce with small wave normal angles in the outer plasmasphere or inside plumes; Type III: <0.01 fce with oblique wave normal angles mostly within the plasmasphere or plumes; Type IV: 0.05–0.5 fce with oblique wave normal angl. . .
Date: 01/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026041 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026041
More Details
Authors: Mozer F S, Agapitov O. V., Hull A., Lejosne S., and Vasko I. Y.
Title: Pulsating auroras produced by interactions of electrons and time domain structures
Abstract: Previous evidence has suggested that either lower band chorus waves or kinetic Alfven waves scatter equatorial kilovolt electrons that propagate to lower altitudes where they precipitate or undergo further low-altitude scattering to make pulsating auroras. Recently, time domain structures (TDSs) were shown, both theoretically and experimentally, to efficiently scatter equatorial electrons. To assess the relative importance of these three mechanisms for production of pulsating auroras, 11 intervals of equatorial THEMIS data and a 4 h interval of Van Allen Probe measurements have been analyzed. During these events, lower band chorus waves produced only negligible modifications of the equatorial electron distributions. During the several TDS events, the equatorial 0.1–3 keV electrons became. . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024223 Available at: onlinelibrary.wiley.com/doi/10.1002/2017JA024223/full
More Details
Authors: Nomura R., Shiokawa K., Omura Y., Ebihara Y., Miyoshi Y, et al.
Title: Pulsating proton aurora caused by rising tone Pc1 waves
Abstract: We found rising tone emissions with a dispersion of ∼1 Hz per several tens of seconds in the dynamic spectrum of a Pc1 geomagnetic pulsation (Pc1) observed on the ground. These Pc1 rising tones were successively observed over ∼30 min from 0250 UT on 14 October 2006 by an induction magnetometer at Athabasca, Canada (54.7°N, 246.7°E, magnetic latitude 61.7°N). Simultaneously, a Time History of Events and Macroscale Interactions during Substorms panchromatic (THEMIS) all-sky camera detected pulsations of an isolated proton aurora with a period of several tens of seconds, ∼10% variations in intensity, and fine structures of 3° in magnetic longitudes. The pulsations of the proton aurora close to the zenith of ATH have one-to-one correspondences with the Pc1 rising tones. This suggests. . .
Date: 02/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: n/a - n/a DOI: 10.1002/2015JA021681 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2015JA021681/full
More Details
Authors: Li W, Shen X.‐C., Ma Q, Capannolo L., Shi R., et al.
Title: Quantification of Energetic Electron Precipitation Driven by Plume Whistler Mode Waves, Plasmaspheric Hiss, and Exohiss
Abstract: Whistler mode waves are important for precipitating energetic electrons into Earth's upper atmosphere, while the quantitative effect of each type of whistler mode wave on electron precipitation is not well understood. In this letter, we evaluate energetic electron precipitation driven by three types of whistler mode waves: plume whistler mode waves, plasmaspheric hiss, and exohiss observed outside the plasmapause. By quantitatively analyzing three conjunction events between Van Allen Probes and POES/MetOp satellites, together with quasi‐linear calculation, we found that plume whistler mode waves are most effective in pitch angle scattering loss, particularly for the electrons from tens to hundreds of keV. Our new finding provides the first direct evidence of effective pitch angle scatter. . .
Date: 03/2019 Publisher: Geophysical Research Letters Pages: 3615 - 3624 DOI: 10.1029/2019GL082095 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082095
More Details
Authors: O’Brien T P, Looper M. D., and Blake J. B.
Title: Quantification of relativistic electron microburst losses during the GEM storms
Abstract: Bursty precipitation of relativistic electrons has been implicated as a major loss process during magnetic storms. One type of precipitation, microbursts, appears to contain enough electrons to empty the prestorm outer radiation belt in approximately a day. During storms that result in high fluxes of trapped relativistic electrons, microbursts continue for several days into the recovery phase, when trapped fluxes are dramatically increasing. The present study shows that this apparent inconsistency is resolved by observations that the number of electrons lost through microbursts is 10–100 times larger during the main phase than during the recovery phase of several magnetic storms chosen by the Geospace Environment Modeling (GEM) program.
Date: 02/2004 Publisher: Geophysical Research Letters DOI: 10.1029/2003GL018621 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2003GL018621/abstract
More Details
Authors: Liu Si, Yan Qi, Yang Chang, Zhou Qinghua, He Zhaoguo, et al.
Title: Quantifying Extremely Rapid Flux Enhancements of Radiation Belt Relativistic Electrons Associated With Radial Diffusion
Abstract: Previous studies have revealed a typical picture that seed electrons are transported inward under the drive of radial diffusion and then accelerated via chorus to relativistic energies. Here we show a potentially different process during the 2–3 October 2013 storm when Van Allen Probes observed extremely rapid (by about 50 times in 2 h) flux enhancements of relativistic (1.8–3.4 MeV) electrons but without distinct chorus at lower L-shells. Meanwhile, Time History of Events and Macroscale Interactions during Substorms satellites simultaneously measured enhanced chorus and fluxes of energetic (∼100–300 keV) seed electrons at higher L-shells. Numerical calculations show that chorus can efficiently accelerate seed electrons at L ∼ 8.3. Then radial diffusion further increased the phas. . .
Date: 02/2018 Publisher: Geophysical Research Letters Pages: 1262 - 1270 DOI: 10.1002/grl.v45.310.1002/2017GL076513 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL076513/full
More Details
Authors: Li W, Ni B, Thorne R M, Bortnik J, Nishimura Y., et al.
Title: Quantifying hiss-driven energetic electron precipitation: A detailed conjunction event analysis
Abstract: We analyze a conjunction event between the Van Allen Probes and the low-altitude Polar Orbiting Environmental Satellite (POES) to quantify hiss-driven energetic electron precipitation. A physics-based technique based on quasi-linear diffusion theory is used to estimate the ratio of precipitated and trapped electron fluxes (R), which could be measured by the two-directional POES particle detectors, using wave and plasma parameters observed by the Van Allen Probes. The remarkable agreement between modeling and observations suggests that this technique is applicable for quantifying hiss-driven electron scattering near the bounce loss cone. More importantly, R in the 100–300 keV energy channel measured by multiple POES satellites over a broad L magnetic local time region can potentially pr. . .
Date: 02/2014 Publisher: Geophysical Research Letters Pages: 1085 - 1092 DOI: 10.1002/2013GL059132 Available at: http://doi.wiley.com/10.1002/2013GL059132
More Details
Authors: Boyd A. J., Spence H E, Claudepierre S G, Fennell J. F., Blake J B, et al.
Title: Quantifying the radiation belt seed population in the 17 March 2013 electron acceleration event
Abstract: We present phase space density (PSD) observations using data from the Magnetic Electron Ion Spectrometer instrument on the Van Allen Probes for the 17 March 2013 electron acceleration event. We confirm previous results and quantify how PSD gradients depend on the first adiabatic invariant. We find a systematic difference between the lower-energy electrons (1 MeV with a source region within the radiation belts. Our observations show that the source process begins with enhancements to the 10s–100s keV energy seed population, followed by enhancements to the >1 MeV population and eventually leading to enhancements in the multi-MeV electron population. These observations provide the clearest evidence to date . . .
Date: 04/2014 Publisher: Geophysical Research Letters Pages: 2275 - 2281 DOI: 10.1002/2014GL059626 Available at: http://doi.wiley.com/10.1002/2014GL059626
More Details
Authors: Su Zhenpeng, Zhu Hui, Xiao Fuliang, Zheng Huinan, Wang Yuming, et al.
Title: Quantifying the relative contributions of substorm injections and chorus waves to the rapid outward extension of electron radiation belt
Abstract: We study the rapid outward extension of the electron radiation belt on a timescale of several hours during three events observed by RBSP and THEMIS satellites, and particularly quantify the contributions of substorm injections and chorus waves to the electron flux enhancement near the outer boundary of radiation belt. A comprehensive analysis including both observations and simulations is performed for the first event on 26 May 2013. The outer boundary of electron radiation belt moved from L = 5.5 to L > 6.07 over about 6 hours, with up to four orders of magnitude enhancement in the 30 keV-5 MeV electron fluxes at L = 6. The observations show that the substorm injection can cause 100% and 20% of the total subrelativistic (~0.1 MeV) and relativistic (2-5 MeV) electron . . .
Date: 12/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020709 Available at: http://doi.wiley.com/10.1002/2014JA020709
More Details
Authors: Ma Q, Li W, Bortnik J, Thorne R M, Chu X., et al.
Title: Quantitative Evaluation of Radial Diffusion and Local Acceleration Processes During GEM Challenge Events
Abstract: We simulate the radiation belt electron flux enhancements during selected Geospace Environment Modeling (GEM) challenge events to quantitatively compare the major processes involved in relativistic electron acceleration under different conditions. Van Allen Probes observed significant electron flux enhancement during both the storm time of 17–18 March 2013 and non–storm time of 19–20 September 2013, but the distributions of plasma waves and energetic electrons for the two events were dramatically different. During 17–18 March 2013, the SYM‐H minimum reached −130 nT, intense chorus waves (peak Bw ~140 pT) occurred at 3.5 < L < 5.5, and several hundred keV to several MeV electron fluxes increased by ~2 orders of magnitude mostly at 3.5 < L < 5.5. During 19–20 September 2013, th. . .
Date: 03/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA025114 Available at: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JA025114
More Details
Authors: Yoon Peter H., Hwang Junga, Kim Hyangpyo, and Seough Jungjoon
Title: Quasi Thermal Noise Spectroscopy for Van Allen Probes
Abstract: Quasi thermal fluctuations in the Langmuir/upper‐hybrid frequency range are pervasively observed in space plasmas including the radiation belt and the ring current region of inner magnetosphere as well as the solar wind. The quasi thermal noise spectroscopy may be employed in order to determine the electron density and temperature as well as to diagnose the properties of energetic electrons when direct measurements are not available. However, when employing the technique, one must carefully take the spacecraft orientation into account. The present paper takes the upper‐hybrid and multiple harmonic—or (n + 1/2)fce—emissions measured by the Van Allen Probes as an example in order to illustrate how the spacecraft antenna geometrical factor can be incorporated into the theoretical . . .
Date: 04/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026460 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026460
More Details
Authors: ěmec F., Hospodarsky G B, ěková B., Demekhov A. G., Pasmanik D. L., et al.
Title: Quasiperiodic Whistler Mode Emissions Observed by the Van Allen Probes Spacecraft
Abstract: Quasiperiodic (QP) emissions are whistler mode electromagnetic waves observed in the inner magnetosphere which exhibit a QP time modulation of the wave intensity. We analyze 768 QP events observed during the first five years of the operation of the Van Allen Probes spacecraft (09/2012–10/2017). Multicomponent wave measurements performed in the equatorial region, where the emissions are likely generated, are used to reveal new experimental information about their properties. We show that the events are observed nearly exclusively inside the plasmasphere. Wave frequencies are mostly between about 0.5 and 4 kHz. The events observed at larger radial distances and on the duskside tend to have slightly lower frequencies than the emissions observed elsewhere. The maximum event frequencies are l. . .
Date: 10/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026058 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026058
More Details
Authors: Dai Guyue, Su Zhenpeng, Liu Nigang, Wang Bin, Zheng Huinan, et al.
Title: Quenching of Equatorial Magnetosonic Waves by Substorm Proton Injections
Abstract: Near equatorial (fast) magnetosonic waves, characterized by high magnetic compressibility, are whistler‐mode emissions destabilized by proton shell/ring distributions. In the past, substorm proton injections are widely known to intensify magnetosonic waves in the inner magnetosphere. Here we report the unexpected observations by the Van Allen Probes of the magnetosonic wave quenching associated with the substorm proton injections under both high‐ and low‐density conditions. The enhanced proton thermal pressure distorted the background magnetic field configuration and the cold plasma density distribution. The reduced phase velocities locally allowed the weak growth or even damping of magnetosonic waves. Meanwhile, the spatially irregularly varying refractive indices might suppress the. . .
Date: 05/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL082944 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082944
More Details
Authors: Gerrard Andrew, Lanzerotti Louis, Gkioulidou Matina, Mitchell Donald, Manweiler Jerry, et al.
Title: Quiet time observations of He ions in the inner magnetosphere as observed from the RBSPICE instrument aboard the Van Allen Probes mission
Abstract: He ions contribute to Earth's ring current energy and species population density and are important in understanding ion transport and charge exchange processes in the inner magnetosphere. He ion flux measurements made by the Van Allen Probes Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument are presented in this paper. Particular focus is centered on geomagnetically quiet intervals in late 2012 and 2013 that show the flux, L-shell, and energy (65 keV to 518 keV) morphology of ring current He ions between geomagnetic storm injection events. The overall He ion abundance during the first nine months of RBSPICE observations, the appearance of a persistent high energy, low L-shell He ion population, and the temporal evolution of this population all provide new insights. . .
Date: 02/2014 Publisher: Geophysical Research Letters Pages: 1100 - 1105 DOI: 10.1002/2013GL059175 Available at: http://doi.wiley.com/10.1002/2013GL059175
More Details
Authors: Holmes-Siedle A G, Goldsten J O, Maurer R H, and Peplowski P N
Title: RadFET Dosimeters in the Belt: the Van Allen Probes on Day 365
Abstract: Van Allen Probes A and B, launched more than a year ago (in August 2012), carried 16 p-channel metal-oxide-semiconductor Radiation-sensitive Field Effect Transistors (RadFET)s into an orbit designed by NASA to probe the heart of the trapped-radiation belts. Nearly 350 days of in situ measurements from the Engineering Radiation Monitor (ERM) (1) demonstrated strong variations of dose rates with time, (2) revealed a critical correlation between the ERM RadFET dosimeters and the ERM Faraday cup data on charged particles, and (3) permitted the mapping of the belts by measuring variation with orbit altitude. This paper provides an update on early results given in a NSREC2012 paper along with details and discussion of the RadFET dosimetry data analyzed .
Date: 04/2014 Publisher: IEEE Transactions on Nuclear Science Pages: 948 - 954 DOI: 10.1109/TNS.2014.2307012 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6786389
More Details
Authors: Holmes-Siedle A.G., Maurer R H, and Peplowski P N
Title: RadFET Dosimeters in the Belt: the Van Allen Probes on Day 365
Abstract: Van Allen Probes A and B, launched more than a year ago (in August 2012), carried 16 p-channel metal-oxide-semiconductor Radiation-sensitive Field Effect Transistors (RadFET)s into an orbit designed by NASA to probe the heart of the trapped-radiation belts. Nearly 350 days of in situ measurements from the Engineering Radiation Monitor (ERM) (1) demonstrated strong variations of dose rates with time, (2) revealed a critical correlation between the ERM RadFET dosimeters and the ERM Faraday cup data on charged particles, and (3) permitted the mapping of the belts by measuring variation with orbit altitude. This paper provides an update on early results given in a NSREC2012 paper along with details and discussion of the RadFET dosimetry data analyzed .
Date: 04/2014 Publisher: IEEE Transactions on Nuclear Science Pages: 948-954 DOI: N/A Available at: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6786389
More Details
Authors: Brautigam D H, and Albert J M
Title: Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm
Abstract: The response of outer radiation belt relativistic electrons to the October 9, 1990, magnetic storm is analyzed in detail using a radial diffusion model and data from the Combined Release and Radiation Effects Satellite (CRRES) and the Los Alamos National Laboratory (LANL) geosynchronous satellite 1989-046. Electron measurements are expressed in terms of phase space density as a function of the three adiabatic invariants determined from CRRES magnetic field data and the Tsyganenko 1989 Kp-dependent magnetic field model. The radial diffusion model is implemented with a time-dependent radial diffusion coefficient parameterized by Kp, and a time-dependent outer boundary condition scaled by geosynchronous electron data. The results show that radial diffusion propagates outer boundary variations. . .
Date: 01/2000 Publisher: Journal of Geophysical Research Pages: 291 DOI: 10.1029/1999JA900344 Available at: http://onlinelibrary.wiley.com/doi/10.1029/1999JA900344/full
More Details
Authors: Fei Yue, Chan Anthony A, Elkington Scot R, and Wiltberger Michael J
Title: Radial diffusion and MHD particle simulations of relativistic electron transport by ULF waves in the September 1998 storm
Abstract: In an MHD particle simulation of the September 1998 magnetic storm the evolution of the radiation belt electron radial flux profile appears to be diffusive, and diffusion caused by ULF waves has been invoked as the probable mechanism. In order to separate adiabatic and nonadiabatic effects and to investigate the radial diffusion mechanism during this storm, in this work we solve a radial diffusion equation with ULF wave diffusion coefficients and a time-dependent outer boundary condition, and the results are compared with the phase space density of the MHD particle simulation. The diffusion coefficients include contributions from both symmetric resonance modes (ω ≈ mωd, where ω is the wave frequency, m is the azimuthal wave number, and ωd is the bounce-averaged drift frequency) and . . .
Date: 12/2006 Publisher: Journal of Geophysical Research DOI: 10.1029/2005JA011211 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2005JA011211/abstract
More Details
Authors: Newkirk L L, and Walt M
Title: Radial Diffusion Coefficient for Electrons at 1.76 < L < 5
Abstract: Radial diffusion by nonconservation of the third adiabatic invariant of particle motion is assumed in analyzing experiments in which electrons appeared to move across field lines. Time-dependent solutions of the Fokker-Planck diffusion equation are obtained numerically and fitted to the experimental results by adjusting the diffusion coefficient. Values deduced for the diffusion coefficient vary from 1.3 × 10−5 RE²/day at L = 1.76 to 0.10 RE²/day at L = 5. In the interval 2.6 < L < 5, the coefficient varies as L10±1. Assuming a constant electron source of arbitrary magnitude at L = 6 and the above diffusion coefficients, the equatorial equilibrium distribution is calculated for electrons with energies above 1.6 Mev. The calculation yields an outer belt of electrons whose radial distr. . .
Date: 12/1968 Publisher: Journal of Geophysical Research Pages: 7231 - 7236 DOI: 10.1029/JA073i023p07231 Available at: http://onlinelibrary.wiley.com/doi/10.1029/JA073i023p07231/abstract
More Details
Authors: Newkirk L L, and Walt M
Title: Radial Diffusion Coefficient for Electrons at Low L Values
Abstract: An empirical evaluation of the diffusion coefficient for trapped electrons diffusing across low L shells is obtained by adjusting the coefficient to account for the observed radial profile and the long-term decay rate of the trapped electron flux. The diffusion mechanism is not identified, but it is assumed that the adiabatic invariants µ and J are conserved. The average value of the coefficient for electrons > 1.6 Mev energy is found to decrease monotonically from ∼4 × 10−6 RE²/day at L = 1.16 to ∼2 × 10−7 RE²/day at L = 1.20.
Date: 02/1968 Publisher: Journal of Geophysical Research Pages: 1013 - 1017 DOI: 10.1029/JA073i003p01013 Available at: http://onlinelibrary.wiley.com/doi/10.1029/JA073i003p01013/abstract
More Details
Authors: Li Zhao, Hudson Mary, and Chen Yue
Title: Radial diffusion comparing a THEMIS statistical model with geosynchronous measurements as input
Abstract: The outer boundary energetic electron flux is used as a driver in radial diffusion calculations, and its precise determination is critical to the solution. A new model was proposed recently based on Time History of Events and Macroscale Interactions during Substorms (THEMIS) measurements to express the boundary flux as three fit functions of solar wind parameters in a response window that depend on energy and which solar wind parameter is used: speed, density, or both. The Dartmouth radial diffusion model has been run using Los Alamos National Laboratory (LANL) geosynchronous satellite measurements as the constraint for a one-month interval in July to August 2004, and the calculated phase space density (PSD) is compared with GPS measurements, at magnetic equatorial plane crossings, as a te. . .
Date: 03/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 1863 - 1873 DOI: 10.1002/jgra.v119.310.1002/2013JA019320 Available at: http://doi.wiley.com/10.1002/jgra.v119.3http://doi.wiley.com/10.1002/2013JA019320
More Details
Authors: Lanzerotti L J, Maclennan C G, and Schulz Michael
Title: Radial Diffusion of Outer-Zone Electrons: An Empirical Approach to Third-Invariant Violation
Abstract: The near-equatorial fluxes of outer-zone electrons (E>0.5 Mev and E>1.9 Mev) measured by an instrument on the satellite Explorer 15 following the geomagnetic storm of December 17–18, 1962, are used to determine the electron radial diffusion coefficients and electron lifetimes as functions of L for selected values of the conserved first invariant µ. For each value of µ, the diffusion coefficient is assumed to be time-independent and representable in the form D = DnLn. The diffusion coefficients and lifetimes are then simultaneously obtained by requiring that the L-dependent reciprocal electron lifetime, as determined from the Fokker-Planck equation, deviate minimally from a constant in time. Applied to the data, these few assumptions yield a value of D that is smaller by approximately a. . .
Date: 10/1970 Publisher: Journal of Geophysical Research Pages: 5351 - 5371 DOI: 10.1029/JA075i028p05351 Available at: http://onlinelibrary.wiley.com/doi/10.1029/JA075i028p05351/abstract
More Details
Authors: Farley Thomas A
Title: Radial Diffusion of Starfish Electrons
Abstract: A study of the change in electron intensities in the Starfish electron belt from January 1, 1963, to November 3, 1965, indicates that radial diffusion, both inward and outward from L of 1.40, was a significant loss mechanism for these electrons during this period. For L values of 1.20 and below, the indicated steepening of the pitch-angle distributions during this period has been interpreted as the result of a radial diffusion source for each L shell concentrated near the geomagnetic equator. Since pitch-angle diffusion lifetimes are not well known for 1.20 < L < 1.65, a definitive radial diffusion coefficient cannot be computed from these data. A maximum reasonable diffusion coefficient (mean square displacement per unit time) computed for this range of L for this period has a minimum at . . .
Date: 07/1969 Publisher: Journal of Geophysical Research Pages: 3591 - 3600 DOI: 10.1029/JA074i014p03591 Available at: http://onlinelibrary.wiley.com/doi/10.1029/JA074i014p03591/abstract
More Details
Authors: Albert J
Title: Radial diffusion simulations of the 20 September 2007 radiation belt dropout
Abstract: This is a study of a dropout of radiation belt electrons, associated with an isolated solar wind density pulse on 20 September 2007, as seen by the solid-state telescopes (SST) detectors on THEMIS (Time History of Events and Macroscale Interactions during Substorms). Omnidirectional fluxes were converted to phase space density at constant invariants M = 700 MeV G−1 and K = 0.014 RE G1/2, with the assumption of local pitch angle α ≈ 80° and using the T04 magnetic field model. The last closed drift shell, which was calculated throughout the time interval, never came within the simulation outer boundary of L* = 6. It is found, using several different models for diffusion rates, that radial diffusion alone only allows the data-driven, time-dependent boundary values at Lmax = 6 and Lmin =. . .
Date: 11/2014 Publisher: Annales Geophysicae Pages: 925 - 934 DOI: 10.5194/angeo-32-925-2014 Available at: http://www.ann-geophys.net/32/925/2014/http://www.ann-geophys.net/32/925/2014/angeo-32-925-2014.pdf
More Details
Authors: Liu Z. Y., Zong Q.-G., Hao Y. X., Liu Y., and Chen X. R.
Title: The Radial Propagation Characteristics of the Injection Front: A Statistical Study Based on BD-IES and Van Allen Probes Observations
Abstract: Electron flux measurements outside geosynchronous orbit (GSO) obtained by the BeiDa Imaging Electron Spectrometer instrument onboard a 55 degrees-inclined GSO satellite, and inside GSO obtained by the Van Allen Probes are analyzed to investigate the temporal and spatial evolutions of the substorm injection region. In one year data started from October 2015, 63 injection events are identified. Firstly, our study shows that the injection signatures can be detected in a large radial extent in one single event, for example, from L ∼ 4.1 to L ∼ 9.3. Secondly, injection onset times are derived from the energy dispersion of particle injection signatures of each satellite. The difference of the onset times among satellites reveals that the injection boundary, termed as “injection front” in. . .
Date: 02/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2018JA025185 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2018JA025185/full
More Details
Authors: UKHORSKIY A, and SITNOV M
Title: Radial transport in the outer radiation belt due to global magnetospheric compressions
Abstract: Earth's outer radiation belt is populated by relativistic electrons that produce a complex dynamical response to varying geomagnetic activity. One fundamental process defining global state of the belt is radial transport of electrons across their drift shells. Radial transport is induced by resonant interaction of electron drift motion with ULF oscillations of electric and magnetic fields and is commonly believed to be a diffusive process. The goal of this paper is the analysis of radial transport due to typical ULF fluctuations in the inner magnetospheric fields. For this purpose a test-particle approach is used in the guiding center approximation. In particular we consider ULF oscillations due to global magnetospheric compressions. It is shown that typical pressure variations induce larg. . .
Date: 11/2008 Publisher: Journal of Atmospheric and Solar-Terrestrial Physics Pages: 1714 - 1726 DOI: 10.1016/j.jastp.2008.07.018 Available at: http://www.sciencedirect.com/science/article/pii/S1364682608001971
More Details
Authors: Mitani K., Seki K., Keika K, Gkioulidou M., Lanzerotti L J, et al.
Title: Radial Transport of Higher-Energy Oxygen Ions Into the Deep Inner Magnetosphere Observed by Van Allen Probes
Abstract: The transport mechanism of the ring current ions differs among ion energies. Lower‐energy (≲150 keV) ions are well known to be transported convectively. Higher‐energy (≳150 keV) protons are reported to be transported diffusively, while there are few reports about transport of higher‐energy oxygen ions. We report the radial transport of higher‐energy oxygen ions into the deep inner magnetosphere during the late main phase of the magnetic storm on 23–25 April 2013 observed by the Van Allen Probes spacecraft. An enhancement of 1–100 mHz magnetic fluctuations is simultaneously observed. Observations of 3 and 30 mHz geomagnetic pulsations indicate the azimuthal mode number is ≤10. The fluctuations can resonate with the drift and bounce motions of the oxygen ions. The results s. . .
Date: 05/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL077500 Available at: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018GL077500
More Details
Authors: Chaston C. C., Bonnell J. W., Wygant J R, Reeves G D, Baker D N, et al.
Title: Radial transport of radiation belt electrons in kinetic field-line resonances
Abstract: A representative case study from the Van Allen Probes during a geomagnetic storm recovery phase reveals enhanced electron fluxes at intermediate pitch angles over energies from ~100 keV to 5 MeV coincident with broadband low frequency electromagnetic waves. The statistical properties of these waves are used to build a model for radial diffusion via drift-bounce resonances in kinetic Alfvén eigenmodes/kinetic field-line resonances. Estimated diffusion coefficients indicate timescales for radial transport of the order of hours in storm-time events at energies from <100 keV to MeVs over equatorial pitch angles from the edge of the loss cone to nearly perpendicular to the geomagnetic field. The correlation of kinetic resonances with electron depletions and enhancements during storm main phase. . .
Date: 07/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL074587 Available at: onlinelibrary.wiley.com/doi/10.1002/2017GL074587/full
More Details
Authors: Hudson M K, Brito Thiago, Elkington Scot, Kress Brian, Li Zhao, et al.
Title: Radiation belt 2D and 3D simulations for CIR-driven storms during Carrington Rotation 2068
Abstract: As part of the International Heliospheric Year, the Whole Heliosphere Interval, Carrington Rotation 2068, from March 20 to April 16, 2008 was chosen as an internationally coordinated observing and modeling campaign. A pair of solar wind structures identified as Corotating Interaction Regions (CIR), characteristic of the declining phase of the solar cycle and solar minimum, was identified in solar wind plasma measurements from the ACE satellite. Such structures have previously been determined to be geoeffective in producing enhanced outer zone radiation belt electron fluxes, on average greater than at solar maximum. MHD fields from the Coupled Magnetosphere–Ionosphere–Thermosphere (CMIT) model driven by ACE solar wind measurements at L1 have been used to drive both 2D and 3D weighted te. . .
Date: 07/2012 Publisher: Journal of Atmospheric and Solar-Terrestrial Physics Pages: 51 - 62 DOI: 10.1016/j.jastp.2012.03.017 Available at: http://www.sciencedirect.com/science/article/pii/S1364682612001010
More Details
Authors: Chaston C. C., Bonnell J. W., Wygant J R, Reeves G D, Baker D N, et al.
Title: Radiation belt “dropouts” and drift-bounce resonances in broadband electromagnetic waves
Abstract: Observations during the main phase of geomagnetic storms reveal an anti-correlation between the occurrence of broadband low frequency electromagnetic waves and outer radiation belt electron flux. We show that the drift-bounce motion of electrons in the magnetic field of these waves leads to rapid electron transport. For observed spectral energy densities it is demonstrated that the wave magnetic field can drive radial diffusion via drift-bounce resonance on timescales less than a drift orbit. This process may provide outward transport sufficient to account for electron “dropouts” during storm main phase and more generally modulate the outer radiation belt during geomagnetic storms.
Date: 02/2018 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL076362 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL076362/full
More Details
Authors: Li W, Thorne R M, Ma Q, Ni B, Bortnik J, et al.
Title: Radiation belt electron acceleration by chorus waves during the 17 March 2013 storm
Abstract: Local acceleration driven by whistler-mode chorus waves is fundamentally important for accelerating seed electron populations to highly relativistic energies in the outer radiation belt. In this study, we quantitatively evaluate chorus-driven electron acceleration during the 17 March 2013 storm, when the Van Allen Probes observed very rapid electron acceleration up to several MeV within ~12 hours. A clear radial peak in electron phase space density (PSD) observed near L* ~4 indicates that an internal local acceleration process was operating. We construct the global distribution of chorus wave intensity from the low-altitude electron measurements made by multiple Polar Orbiting Environmental Satellites (POES) satellites over a broad region, which is ultimately used to simulate the radiati. . .
Date: 06/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 4681 - 4693 DOI: 10.1002/jgra.v119.610.1002/2014JA019945 Available at: http://doi.wiley.com/10.1002/jgra.v119.6http://doi.wiley.com/10.1002/2014JA019945
More Details
Authors: Li W, Ma Q, Thorne R M, Bortnik J, Zhang X.-J., et al.
Title: Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations
Abstract: Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth's radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electron evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak loca. . .
Date: 06/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: 5520 - 5536 DOI: 10.1002/jgra.v121.610.1002/2016JA022400 Available at: http://doi.wiley.com/10.1002/2016JA022400
More Details
Authors: Lei Mingda, Xie Lun, Li Jinxing, Pu Zuyin, Fu Suiyan, et al.
Title: The Radiation Belt Electron Scattering by Magnetosonic Wave: Dependence on Key Parameters
Abstract: Magnetosonic (MS) waves have been found capable of creating radiation belt electron butterfly distributions in the inner magnetosphere. To investigate the physical nature of the interactions between radiation belt electrons and MS waves, and to explore a preferential condition for MS waves to scatter electrons efficiently, we performed a comprehensive parametric study of MS wave-electron interactions using test particle simulations. The diffusion coefficients simulated by varying the MS wave frequency show that the scattering effect of MS waves is frequency insensitive at low harmonics (f < 20 fcp), which has great implications on modeling the electron scattering caused by MS waves with harmonic structures. The electron scattering caused by MS waves is very sensitive to wave normal angles,. . .
Date: 12/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023801 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023801/full
More Details
Authors: Tang C. L., Wang Y. X., Ni B, Zhang J.-C., Reeves G D, et al.
Title: Radiation belt seed population and its association with the relativistic electron dynamics: A statistical study
Abstract: Using the particle data measured by Van Allen Probe A from October 2012 to March 2016, we investigate in detail the radiation belt seed population and its association with the relativistic electron dynamics during 74 geomagnetic storms. The period of the storm recovery phase was limited to 72 h. The statistical study shows that geomagnetic storms and substorms play important roles in the radiation belt seed population (336 keV electrons) dynamics. Based on the flux changes of 1 MeV electrons before and after the storm peak, these storm events are divided into two groups of “large flux enhancement” and “small flux enhancement.” For large flux enhancement storm events, the correlation coefficients between the peak flux location of the seed population and those of relativistic electro. . .
Date: 05/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA023905 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA023905/full
More Details
Authors: Mitchell D G, Lanzerotti L J, Kim C K, Stokes M, Ho G, et al.
Title: Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE)
Abstract: The Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on the two Van Allen Probes spacecraft is the magnetosphere ring current instrument that will provide data for answering the three over-arching questions for the Van Allen Probes Program: RBSPICE will determine “how space weather creates the storm-time ring current around Earth, how that ring current supplies and supports the creation of the radiation belt populations,” and how the ring current is involved in radiation belt losses. RBSPICE is a time-of-flight versus total energy instrument that measures ions over the energy range from ∼20 keV to ∼1 MeV. RBSPICE will also measure electrons over the energy range ∼25 keV to ∼1 MeV in order to provide instrument background information in the radiation belts. A des. . .
Date: 11/2013 Publisher: Space Science Reviews Pages: 263-308 DOI: 10.1007/s11214-013-9965-x Available at: http://link.springer.com/article/10.1007%2Fs11214-013-9965-x
More Details
Authors: Kessel R L, Fox N J, and Weiss M
Title: The Radiation Belt Storm Probes (RBSP) and Space Weather
Abstract: Following the launch and commissioning of NASA’s Radiation Belt Storm Probes (RBSP) in 2012, space weather data will be generated and broadcast from the spacecraft in near real-time. The RBSP mission targets one part of the space weather chain: the very high energy electrons and ions magnetically trapped within Earth’s radiation belts. The understanding gained by RBSP will enable us to better predict the response of the radiation belts to solar storms in the future, and thereby protect space assets in the near-Earth environment. This chapter details the presently planned RBSP capabilities for generating and broadcasting near real-time space weather data, discusses the data products, the ground stations collecting the data, and the users/models that will incorporate the data into test-b. . .
Date: 11/2013 Publisher: Space Science Reviews Pages: 531-543 DOI: 10.1007/s11214-012-9953-6 Available at: http://link.springer.com/article/10.1007%2Fs11214-012-9953-6
More Details
Authors: Turney D, Matiella Novak A, Beisser K, and Fox N
Title: Radiation Belt Storm Probes (RBSP) Education and Public Outreach Program
Abstract: The Radiation Belt Storm Probes (RBSP) Education and Public Outreach (E/PO) program serves as a pipeline of activities to inspire and educate a broad audience about Heliophysics and the Sun-Earth system, specifically the Van Allen Radiation Belts. The program is comprised of a variety of formal, informal and public outreach activities that all align with the NASA Education Portfolio Strategic Framework outcomes. These include lesson plans and curriculum for use in the classroom, teacher workshops, internship opportunities, activities that target underserved populations, collaboration with science centers and NASA visitors’ centers and partnerships with experts in the Heliophysics and education disciplines. This paper will detail the activities that make up the RBSP E/PO program, their in. . .
Date: 11/2013 Publisher: Space Science Reviews Pages: 617-646 DOI: 10.1007/s11214-012-9945-6 Available at: http://link.springer.com/article/10.1007%2Fs11214-012-9945-6
More Details
Authors: Ukhorskiy Aleksandr Y., Mauk Barry H., Fox Nicola J., Sibeck David G., and Grebowsky Joseph M.
Title: Radiation belt storm probes: Resolving fundamental physics with practical consequences
Abstract: The fundamental processes that energize, transport, and cause the loss of charged particles operate throughout the universe at locations as diverse as magnetized planets, the solar wind, our Sun, and other stars. The same processes operate within our immediate environment, the Earth's radiation belts. The Radiation Belt Storm Probes (RBSP) mission will provide coordinated two-spacecraft observations to obtain understanding of these fundamental processes controlling the dynamic variability of the near-Earth radiation environment. In this paper we discuss some of the profound mysteries of the radiation belt physics that will be addressed by RBSP and briefly describe the mission and its goals.
Date: 07/2011 Publisher: Journal of Atmospheric and Solar-Terrestrial Physics Pages: 1417 - 1424 DOI: 10.1016/j.jastp.2010.12.005 Available at: http://www.sciencedirect.com/science/article/pii/S1364682610003688
More Details
Authors: Reeves Geoffrey D
Title: Radiation Belt Storm Probes: The Next Generation of Space Weather Forecasting
Abstract: N/A
Date: 11/2007 Publisher: Space Weather DOI: 10.1029/2007SW000341 Available at: http://www.agu.org/pubs/crossref/2007/2007SW000341.shtml
More Details

Pages