Biblio

Found 686 results

Pages

2012
Authors: Butler Michael, and Laughery Sean
Title: The RBSP Spacecraft Power System Design and Development
Abstract: The RBSP (Radiation Belt Storm Probes) twin spacecraft are set to launch in August 2012. The spacecraft will be inserted into the highly elliptical regions of high energy particles trapped by the magnetic field of the earth. These regions are often referred to as the Van Allen Belts. The twin spacecraft will operate entirely within the radiation belts throughout their mission. Because of the intense environment of operation and to reduce cost and risk, the approach taken in the power system electronics was to use quasi conventional design, materials, and fabrication techniques encased in a 350mil thick aluminum enclosure. The spacecraft are spin stabilized with an axial boom that creates a shadow across the solar arrays. The power system topology selected was a 28V unregulat. . .
Date: 08/2012 Publisher: American Institute of Aeronautics and Astronautics DOI: 10.2514/MIECEC1210.2514/6.2012-4059 Available at: http://arc.aiaa.org/doi/pdf/10.2514/6.2012-4059
More Details
Authors: Hudson M K, Brito Thiago, Elkington Scot, Kress Brian, Li Zhao, et al.
Title: Radiation belt 2D and 3D simulations for CIR-driven storms during Carrington Rotation 2068
Abstract: As part of the International Heliospheric Year, the Whole Heliosphere Interval, Carrington Rotation 2068, from March 20 to April 16, 2008 was chosen as an internationally coordinated observing and modeling campaign. A pair of solar wind structures identified as Corotating Interaction Regions (CIR), characteristic of the declining phase of the solar cycle and solar minimum, was identified in solar wind plasma measurements from the ACE satellite. Such structures have previously been determined to be geoeffective in producing enhanced outer zone radiation belt electron fluxes, on average greater than at solar maximum. MHD fields from the Coupled Magnetosphere–Ionosphere–Thermosphere (CMIT) model driven by ACE solar wind measurements at L1 have been used to drive both 2D and 3D weighted te. . .
Date: 07/2012 Publisher: Journal of Atmospheric and Solar-Terrestrial Physics Pages: 51 - 62 DOI: 10.1016/j.jastp.2012.03.017 Available at: http://www.sciencedirect.com/science/article/pii/S1364682612001010
More Details
Authors: Min Kyungguk, Lee Jeongwoo, Keika Kunihiro, and Li W
Title: Global distribution of EMIC waves derived from THEMIS observations
Abstract: [1] Electromagnetic ion cyclotron (EMIC) waves play an important role in magnetospheric dynamics and their global distribution has been of great interest. This paper presents the distribution of EMIC waves over a broader range than ever before, as enabled by observations with the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft from 2007 to 2010. Our major findings are: (1) There are two major peaks in the EMIC wave occurrence probability. One is at dusk and 8–12 RE where the helium band dominates the hydrogen band waves. The other is at dawn and 10–12 RE where the hydrogen band dominates the helium band waves. (2) In terms of wave spectral power the dusk events are stronger (≈10 nT2/Hz) than the dawn events (≈3 nT2/Hz). (3) The dawn . . .
Date: 05/2012 Publisher: Journal of Geophysical Research DOI: 10.1029/2012JA017515
More Details
Authors: Kirby Karen, Bushman Stewart, Butler Michael, Conde Rich, Fretz Kristen, et al.
Title: Radiation Belt Storm Probe Spacecraft and Impact of Environment on Spacecraft Design
Abstract: NASA's Radiation Belt Storm Probe (RBSP) is an Earth-orbiting mission scheduled to launch in September 2012 and is the next science mission in NASA's Living with a Star Program. The RBSP mission will investigate, characterize and understand the physical dynamics of the radiation belts, and the influence of the sun on the earth's environment, by measuring particles, electric and magnetic fields and waves that comprise the geospace. The mission is composed of two identically instrumented spinning spacecraft in an elliptical orbit around earth from 600 km perigee to 30,000 km apogee at 10 degree inclination to provide full sampling of the Van Allen radiation belts. The twin spacecraft will follow slightly different orbits and will lap each other 4 times per year; this offers simultaneous meas. . .
Date: 03/2012 Publisher: IEEE DOI: 10.1109/AERO.2012.6187020 Available at: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=06187020
More Details
Authors: Turner Drew L, Shprits Yuri, Hartinger Michael, and Angelopoulos Vassilis
Title: Explaining sudden losses of outer radiation belt electrons during geomagnetic storms
Abstract: The Van Allen radiation belts were first discovered in 1958 by the Explorer series of spacecraft1. The dynamic outer belt consists primarily of relativistic electrons trapped by the Earth’s magnetic field. Magnetospheric processes driven by the solar wind2 cause the electron flux in this belt to fluctuate substantially over timescales ranging from minutes to years3. The most dramatic of these events are known as flux ’dropouts’ and often occur during geomagnetic storms. During such an event the electron flux can drop by several orders of magnitude in just a few hours4, 5 and remain low even after a storm has abated. Various solar wind phenomena, including coronal mass ejections and co-rotating interaction regions6, can drive storm activity, but several outstanding questions remain co. . .
Date: 01/2012 Publisher: Nature Publishing Group Pages: 208–212 DOI: 10.1038/nphys2185 Available at: http://dx.doi.org/10.1038/nphys2185
More Details
Authors: Crabtree C., Rudakov L., Ganguli G., Mithaiwala M., Galinsky V., et al.
Title: Weak turbulence in the magnetosphere: Formation of whistler wave cavity by nonlinear scattering
Abstract: We consider the weak turbulence of whistler waves in the in low-β inner magnetosphere of the earth. Whistler waves, originating in the ionosphere, propagate radially outward and can trigger nonlinear induced scattering by thermal electrons provided the wave energy density is large enough. Nonlinear scattering can substantially change the direction of the wave vector of whistler waves and hence the direction of energy flux with only a small change in the frequency. A portion of whistler waves return to the ionosphere with a smaller perpendicular wave vector resulting in diminished linear damping and enhanced ability to pitch-angle scatter trapped electrons. In addition, a portion of the scatteredwave packets can be reflected near the ionosphere back into the magnetosphere. Through multiple. . .
Date: 01/2012 Publisher: Physics of Plasmas Pages: 032903 DOI: 10.1063/1.3692092 Available at: http://scitation.aip.org/content/aip/journal/pop/19/3/10.1063/1.3692092
More Details
2011
Authors: Ukhorskiy Aleksandr Y., Mauk Barry H., Fox Nicola J., Sibeck David G., and Grebowsky Joseph M.
Title: Radiation belt storm probes: Resolving fundamental physics with practical consequences
Abstract: The fundamental processes that energize, transport, and cause the loss of charged particles operate throughout the universe at locations as diverse as magnetized planets, the solar wind, our Sun, and other stars. The same processes operate within our immediate environment, the Earth's radiation belts. The Radiation Belt Storm Probes (RBSP) mission will provide coordinated two-spacecraft observations to obtain understanding of these fundamental processes controlling the dynamic variability of the near-Earth radiation environment. In this paper we discuss some of the profound mysteries of the radiation belt physics that will be addressed by RBSP and briefly describe the mission and its goals.
Date: 07/2011 Publisher: Journal of Atmospheric and Solar-Terrestrial Physics Pages: 1417 - 1424 DOI: 10.1016/j.jastp.2010.12.005 Available at: http://www.sciencedirect.com/science/article/pii/S1364682610003688
More Details
Authors: Millan R.M.
Title: Understanding relativistic electron losses with BARREL
Abstract: The primary scientific objective of the Balloon Array for RBSP Relativistic Electron Losses (BARREL) is to understand the processes responsible for scattering relativistic electrons into Earth's atmosphere. BARREL is the first Living with a Star Geospace Mission of Opportunity, and will consist of two Antarctic balloon campaigns conducted in the 2012 and 2013 Austral summer seasons. During each campaign, a total of 20 small View the MathML source(∼20kg) balloon payloads will be launched, providing multi-point measurements of electron precipitation in conjunction with in situ measurements from the two RBSP spacecraft, scheduled to launch in May 2012. In this paper we outline the scientific objectives of BARREL, highlighting a few key science questions that will be addressed by BARREL in c. . .
Date: 07/2011 Publisher: Journal of Atmospheric and Solar-Terrestrial Physics Pages: 1425 - 1434 DOI: 10.1016/j.jastp.2011.01.006 Available at: http://www.sciencedirect.com/science/article/pii/S1364682611000071
More Details
2010
Authors: Min Kyungguk, Lee Jeongwoo, and Keika Kunihiro
Title: Chorus wave generation near the dawnside magnetopause due to drift shell splitting of substorm-injected electrons
Abstract: We study the relationship between the electron injection and the chorus waves during a substorm event on 23 March 2007. The chorus waves were detected at high geomagnetic latitude (∼70°S) Antarctic observatories in the range of 0600–0900 h in magnetic local time (MLT). Electrons drifting from the injection event were measured by two LANL spacecraft at 0300 and 0900 MLT. The mapping of auroral brightening areas to the magnetic equator shows that the injection occurred in an MLT range of 2200–2400. This estimate is consistent with observations by the THEMIS A, B, and D spacecraft (which were located at 2100 MLT and did not observe electron injections). Our backward model tracing from the magnetic equator near the dawnside magnetopause (which magnetically connects to the Antar. . .
Date: 10/2010 Publisher: American Geophysical Union DOI: 10.1029/2010JA015474
More Details
2009
Authors: Kemp Brian L, McGee Timothy G, and Shankar Uday J
Title: Analysis of Spinning Spacecraft with Wire Booms Part 1: Derivation of Nonlinear Dynamics
Abstract: Algebraic expressions for the governing equations of motion are developed to describe a spinning spacecraft with flexible appendages. Two limiting cases are investigated: appendages that are self-restoring and appendages that require spacecraft motion to restore. Solar panels have sufficient root stiffness to self-restore perturbations. Radial wire antennae have little intrinsic root stiffness and require centripetal acceleration from spacecraft rotations to restore perturbations. External forces applied for attitude corrections can displace spacecraft appendages from their steady-state position. The Radiation Belt Storm Probe (RBSP) satellite is used as an example to explore numerical results for several maneuvers.
Date: 08/2009 Publisher: AIAA Guidance, Navigation, and Control Conference DOI: 10.2514/6.2009-6202 Available at: http://arc.aiaa.org/doi/pdf/10.2514/6.2009-6202
More Details
Authors: McGee Timothy G, Shankar Uday J, and Kemp Brian L
Title: Analysis of Spinning Spacecraft with Wire Booms Part 2: Out-of-Plane Dynamics and Maneuvers
Abstract: An analysis of the dynamics for a spin stabilized spacecraft consisting of a rigid central hub with four long exible wire booms is presented. The analysis focuses on the dynamics out of the spin plane of the spacecraft. Companion papers will focus on the derivations of the full nonlinear dynamics and analysis of the in plane dynamics. A linear analysis is used to estimate the mode shapes of the free response of the system, the e ects of various damping mechanisms on these modes, and the dynamic response of the system to various maneuvers. The results of an independent simulation of the full nonlinear dynamics of the system are also provided to support the linear analysis. While the dynamics and analysis approach presented can be applied to the general class of spin stabilized space. . .
Date: 08/2009 Publisher: AIAA Guidance, Navigation, and Control Conference DOI: 10.2514/6.2009-6203 Available at: http://arc.aiaa.org/doi/pdf/10.2514/6.2009-6203
More Details
Authors: Shankar Uday J, McGee Timothy G, and Kemp Brian L
Title: Analysis of Spinning Spacecraft with Wire Booms Part 3: Spin-Plane Dynamics, Maneuvers, and Deployment
Abstract: Several science spacecraft use long wire booms as electric-field antennas and the spacecraft spins to maintain the orientation of these flexible wires. These booms account for a majority of the total spacecraft inertia while weighing only a small fraction of the total mass. The spacecraft dynamics is therefore dominated by these booms. The analysis of such spacecraft is further complicated by other flexible ap- pendages and the presence of damping in the system, both inherent in the sys- tem and from damping mechanisms deliberately added into the system. This pa- per and two companion papers analyze such spacecraft. The first of these derives the governing nonlinear equations from first principles. Under certain conditions, the dynamics neatly separate into spin-plane and out-of-p. . .
Date: 08/2009 Publisher: AIAA Guidance, Navigation, and Control Conference DOI: 10.2514/6.2009-6204 Available at: http://arc.aiaa.org/doi/pdf/10.2514/6.2009-6204
More Details
Authors: Ohtani S, Miyoshi Y, Singer H J, and Weygand J M
Title: On the loss of relativistic electrons at geosynchronous altitude: Its dependence on magnetic configurations and external conditions
Abstract: [1] The present study statistically examines geosynchronous magnetic configurations and external conditions that characterize the loss of geosynchronous MeV electrons. The loss of MeV electrons often takes place during magnetospheric storms, but it also takes place without any clear storm activity. It is found that irrespective of storm activity, the day-night asymmetry of the geosynchronous H (north-south) magnetic component is pronounced during electron loss events. For the loss process, the magnitude, rather than the duration, of the magnetic distortion appears to be important, and its effective duration can be as short as ∼30 min. The solar wind dynamic pressure tends to be high and interplanetary magnetic field BZ tends to be southward during electron loss events. Under such externa. . .
Date: 01/2009 Publisher: Journal of Geophysical Research DOI: 10.1029/2008JA013391 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2008JA013391/full
More Details
2008
Authors: KRESS B, Hudson M K, LOOPER M, LYON J, and GOODRICH C
Title: Global MHD test particle simulations of solar energetic electron trapping in the Earth’s radiation belts
Abstract: Test-particle trajectories are computed in fields from a global MHD magnetospheric model simulation of the 29 October 2003 Storm Commencement to investigate trapping and transport of solar energetic electrons (SEEs) in the magnetosphere during severe storms. SEEs are found to provide a source population for a newly formed belt of View the MathML source electrons in the Earth's inner zone radiation belts, which was observed following the 29 October 2003 storm. Energy and pitch angle distributions of the new belt are compared with results previously obtained [Kress, B.T., Hudson, M.K., Looper, M.D., Albert, J., Lyon, J.G., Goodrich, C.C., 2007. Global MHD test particle simulations of >10 MeV radiation belt electrons during storm sudden commencement. Journal of Geophysical Research 112, A0921. . .
Date: 11/2008 Publisher: Journal of Atmospheric and Solar-Terrestrial Physics Pages: 1727 - 1737 DOI: 10.1016/j.jastp.2008.05.018 Available at: http://www.sciencedirect.com/science/article/pii/S1364682608001338
More Details
Authors: UKHORSKIY A, and SITNOV M
Title: Radial transport in the outer radiation belt due to global magnetospheric compressions
Abstract: Earth's outer radiation belt is populated by relativistic electrons that produce a complex dynamical response to varying geomagnetic activity. One fundamental process defining global state of the belt is radial transport of electrons across their drift shells. Radial transport is induced by resonant interaction of electron drift motion with ULF oscillations of electric and magnetic fields and is commonly believed to be a diffusive process. The goal of this paper is the analysis of radial transport due to typical ULF fluctuations in the inner magnetospheric fields. For this purpose a test-particle approach is used in the guiding center approximation. In particular we consider ULF oscillations due to global magnetospheric compressions. It is shown that typical pressure variations induce larg. . .
Date: 11/2008 Publisher: Journal of Atmospheric and Solar-Terrestrial Physics Pages: 1714 - 1726 DOI: 10.1016/j.jastp.2008.07.018 Available at: http://www.sciencedirect.com/science/article/pii/S1364682608001971
More Details
Authors: SHPRITS Y, SUBBOTIN D, MEREDITH N, and ELKINGTON S
Title: Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss
Abstract: This paper focuses on the modeling of local acceleration and loss processes in the outer radiation belt. We begin by reviewing the statistical properties of waves that violate the first and second adiabatic invariants, leading to the loss and acceleration of high energy electrons in the outer radiation belt. After a brief description of the most commonly accepted methodology for computing quasi-linear diffusion coefficients, we present pitch-angle scattering simulations by (i) plasmaspheric hiss, (ii) a combination of plasmaspheric hiss and electromagnetic ion cyclotron (EMIC) waves, (iii) chorus waves, and (iv) a combination of chorus and EMIC waves. Simulations of the local acceleration and loss processes show that statistically, the net effect of chorus waves is acceleration at MeV ener. . .
Date: 11/2008 Publisher: Journal of Atmospheric and Solar-Terrestrial Physics Pages: 1694 - 1713 DOI: 10.1016/j.jastp.2008.06.014 Available at: http://www.sciencedirect.com/science/article/pii/S1364682608001673
More Details
Authors: SHPRITS Y, ELKINGTON S, MEREDITH N, and SUBBOTIN D
Title: Review of modeling of losses and sources of relativistic electrons in the outer radiation belt I: Radial transport
Abstract: In this paper, we focus on the modeling of radial transport in the Earth's outer radiation belt. A historical overview of the first observations of the radiation belts is presented, followed by a brief description of radial diffusion. We describe how resonant interactions with poloidal and toroidal components of the ULF waves can change the electron's energy and provide radial displacements. We also present radial diffusion and guiding center simulations that show the importance of radial transport in redistributing relativistic electron fluxes and also in accelerating and decelerating radiation belt electrons. We conclude by presenting guiding center simulations of the coupled particle tracing and magnetohydrodynamic (MHD) codes and by discussing the origin of relativistic electrons at ge. . .
Date: 11/2008 Publisher: Journal of Atmospheric and Solar-Terrestrial Physics Pages: 1679 - 1693 DOI: 10.1016/j.jastp.2008.06.008 Available at: http://www.sciencedirect.com/science/article/pii/S1364682608001648
More Details
Authors: Degeling A W, and Rankin R
Title: Resonant drift echoes in electron phase space density produced by dayside Pc5 waves following a geomagnetic storm
Abstract: [1] The interaction between relativistic, equatorially mirroring electrons and Pc5 Ultra Low Frequency (ULF) waves in the magnetosphere is investigated using a numerical MagnetoHydroDynamic (MHD) model for waves and a test-kinetic model for electron phase space density (PSD). The temporal and spatial characteristics of a ULF wave packet are constrained using ground-based observations of narrowband ULF activity following a geomagnetic storm on 24 March 1991, which occurred from 1200 to 1340 Universal Time (UT). A salient feature of the ULF waves during this interval was the apparent localization of the ULF wave power to the dayside of the magnetosphere and the antisunward propagation of ULF wave phase in the morning and afternoon sectors. This is interpreted to imply a localized source of U. . .
Date: 10/2008 Publisher: Journal of Geophysical Research DOI: 10.1029/2008JA013254 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2008JA013254/abstract
More Details
Authors: Jordanova V K, Albert J, and Miyoshi Y
Title: Relativistic electron precipitation by EMIC waves from self-consistent global simulations
Abstract: [1] We study the effect of electromagnetic ion cyclotron (EMIC) wave scattering on radiation belt electrons during the large geomagnetic storm of 21 October 2001 with minimum Dst = −187 nT. We use our global physics-based model, which solves the kinetic equation for relativistic electrons and H+, O+, and He+ ions as a function of radial distance in the equatorial plane, magnetic local time, energy, and pitch angle. The model includes time-dependent convective transport and radial diffusion and all major loss processes and is coupled with a dynamic plasmasphere model. We calculate the excitation of EMIC waves self-consistently with the evolving plasma populations. Particle interactions with these waves are evaluated according to quasi-linear theory, using diffusion coefficients for a mult. . .
Date: 03/2008 Publisher: Journal of Geophysical Research DOI: 10.1029/2008JA013239 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2008JA013239/abstract
More Details
2007
Authors: Reeves Geoffrey D
Title: Radiation Belt Storm Probes: The Next Generation of Space Weather Forecasting
Abstract: N/A
Date: 11/2007 Publisher: Space Weather DOI: 10.1029/2007SW000341 Available at: http://www.agu.org/pubs/crossref/2007/2007SW000341.shtml
More Details
Authors: Li W, Shprits Y Y, and Thorne R M
Title: Dynamic evolution of energetic outer zone electrons due to wave-particle interactions during storms
Abstract: [1] Relativistic electrons in the outer radiation belt are subjected to pitch angle and energy diffusion by chorus, electromagnetic ion cyclotron (EMIC), and hiss waves. Using quasi-linear diffusion coefficients for cyclotron resonance with field-aligned waves, we examine whether the resonant interactions with chorus waves produce a net acceleration or loss of relativistic electrons. We also examine the effect of pitch angle scattering by EMIC and hiss waves during the main and recovery phases of a storm. The numerical simulations show that wave-particle interactions with whistler mode chorus waves with realistic wave spectral properties result in a net acceleration of relativistic electrons, while EMIC waves, which provide very fast scattering near the edge of the loss cone, may be a domi. . .
Date: 10/2007 Publisher: Journal of Geophysical Research DOI: 10.1029/2007JA012368 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2007JA012368/full
More Details
Authors: Chen Yue, Reeves Geoffrey D, and Friedel Reiner H W
Title: The energization of relativistic electrons in the outer Van Allen radiation belt
Abstract: The origin and dynamics of the Van Allen radiation belts is one of the longest-standing questions of the space age, and one that is increasingly important for space applications as satellite systems become more sophisticated, smaller and more susceptible to radiation effects. The precise mechanism by which the Earth's magnetosphere is able to accelerate electrons from thermal to ultrarelativistic energies (Edouble greater than0.5 MeV) has been particularly difficult to definitively resolve. The traditional explanation is that large-scale, fluctuating electric and magnetic fields energize particles through radial diffusion1. More recent theories2, 3 and observations4, 5 have suggested that gyro-resonant wave–particle interactions may be comparable to or more important than radial diffusio. . .
Date: 09/2007 Publisher: Nature Physics Pages: 614 - 617 DOI: 10.1038/nphys655 Available at: http://www.nature.com/nphys/journal/v3/n9/full/nphys655.html
More Details
Authors: Kress B T, Hudson M K, Looper M D, Albert J, Lyon J G, et al.
Title: Global MHD test particle simulations of >10 MeV radiation belt electrons during storm sudden commencement
Abstract: [1] Prior to 2003, there are two known cases where ultrarelativistic (≳10 MeV) electrons appeared in the Earth's inner zone radiation belts in association with high speed interplanetary shocks: the 24 March 1991 and the less well studied 21 February 1994 storms. During the March 1991 event electrons were injected well into the inner zone on a timescale of minutes, producing a new stably trapped radiation belt population that persisted for ∼10 years. More recently, at the end of solar cycle 23, a number of violent geomagnetic disturbances resulted in large variations in ultrarelativistic electrons in the inner zone, indicating that these events are less rare than previously thought. Here we present results from a numerical study of shock-induced transport and energization of outer zone . . .
Date: 09/2007 Publisher: Journal of Geophysical Research DOI: 10.1029/2006JA012218 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2006JA012218/abstract
More Details
Authors: Meredith Nigel P, Horne Richard B, Glauert Sarah A, and Anderson Roger R
Title: Slot region electron loss timescales due to plasmaspheric hiss and lightning-generated whistlers
Abstract: [1] Energetic electrons (E > 100 keV) in the Earth's radiation belts undergo Doppler-shifted cyclotron resonant interactions with a variety of whistler mode waves leading to pitch angle scattering and subsequent loss to the atmosphere. In this study we assess the relative importance of plasmaspheric hiss and lightning-generated whistlers in the slot region and beyond. Electron loss timescales are determined using the Pitch Angle and energy Diffusion of Ions and Electrons (PADIE) code with global models of the spectral distributions of the wave power based on CRRES observations. Our results show that plasmaspheric hiss propagating at small and intermediate wave normal angles is a significant scattering agent in the slot region and beyond. In contrast, plasmaspheric hiss propagating at large. . .
Date: 08/2007 Publisher: Journal of Geophysical Research DOI: 10.1029/2007JA012413 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2007JA012413/abstract
More Details
Authors: Thorne R M, Shprits Y Y, Meredith N P, Horne R B, Li W, et al.
Title: Refilling of the slot region between the inner and outer electron radiation belts during geomagnetic storms
Abstract: [1] Energetic electrons (≥50 keV) are injected into the slot region (2 < L < 4) between the inner and outer radiation belts during the early recovery phase of geomagnetic storms. Enhanced convection from the plasma sheet can account for the storm-time injection at lower energies but does not explain the rapid appearance of higher-energy electrons (≥150 keV). The effectiveness of either radial diffusion (driven by enhanced ULF waves) or local acceleration (during interactions with enhanced whistler mode chorus emissions), as a potential source for refilling the slot at higher energies, is analyzed for observed conditions during the early recovery phase of the 10 October 1990 storm. We demonstrate that local acceleration, driven by observed chorus emissions, can account for the rapid enh. . .
Date: 06/2007 Publisher: Journal of Geophysical Research DOI: 10.1029/2006JA012176 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2006JA012176/abstract
More Details
Authors: Degeling A W, Rankin R, Kabin K, Marchand R, and Mann I R
Title: The effect of ULF compressional modes and field line resonances on relativistic electron dynamics
Abstract: The adiabatic, drift-resonant interaction between relativistic, equatorially mirroring electrons and a ULF compressional wave that couples to a field line resonance (FLR) is modelled. Investigations are focussed on the effect of azimuthal localisation in wave amplitude on the electron dynamics. The ULF wave fields on the equatorial plane (r , φ ) are modelled using a box model [Zhu, X., Kivelson, M.G., 1988. Analytic formulation and quantitative solutions of the coupled ULF wave problem. J. Geophys. Res. 93(A8), 8602–8612], and azimuthal variations are introduced by adding a discrete spectrum of azimuthal modes. Electron trajectories are calculated using drift equations assuming constant magnetic moment M , and the evolution of the distribution function f(r,φ,M,t) from an assumed in. . .
Date: 04/2007 Publisher: Planetary and Space Science Pages: 731 - 742 DOI: 10.1016/j.pss.2006.04.039 Available at: http://www.sciencedirect.com/science/article/pii/S0032063306002893
More Details
Authors: Summers D., Ni Binbin, and Meredith Nigel P
Title: Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 1. Theory
Abstract: Radiation belt electrons can interact with various modes of plasma wave in their drift orbits about the Earth, including whistler-mode chorus outside the plasmasphere, and both whistler-mode hiss and electromagnetic ion cyclotron waves inside the plasmasphere. Electrons undergo gyroresonant diffusion in their interactions with these waves. To determine the timescales for electron momentum diffusion and pitch angle diffusion, we develop bounce-averaged quasi-linear resonant diffusion coefficients for field-aligned electromagnetic waves in a hydrogen or multi-ion (H+, He+, O+) plasma. We assume that the Earth's magnetic field is dipolar and that the wave frequency spectrum is Gaussian. Evaluation of the diffusion coefficients requires the solution of a sixth-order polynomial equation for the. . .
Date: 04/2007 Publisher: Journal of Geophysical Research DOI: 10.1029/2006JA011801 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2006JA011801/abstract
More Details
Authors: MILLAN R, and THORNE R
Title: Review of radiation belt relativistic electron losses
Abstract: We present a brief review of radiation belt electron losses which are vitally important for controlling the dynamics of the radiation belts. A historical overview of early observations is presented, followed by a brief description of important known electron loss mechanisms. We describe key theoretical results and observations related to pitch-angle scattering by resonant interaction with plasmaspheric hiss, whistler-mode chorus and electromagnetic ion cyclotron waves, and review recent work on magnetopause losses. In particular, we attempt to organize recent observational data by loss mechanism and their relative importance to the overall rate of loss. We conclude by suggesting future observational and theoretical work that would contribute to our understanding of this important area of r. . .
Date: 03/2007 Publisher: Journal of Atmospheric and Solar-Terrestrial Physics Pages: 362 - 377 DOI: 10.1016/j.jastp.2006.06.019 Available at: http://www.sciencedirect.com/science/article/pii/S1364682606002768
More Details
2006
Authors: Bortnik J, Thorne R M, O’Brien T P, Green J C, Strangeway R J, et al.
Title: Observation of two distinct, rapid loss mechanisms during the 20 November 2003 radiation belt dropout event
Abstract: The relativistic electron dropout event on 20 November 2003 is studied using data from a number of satellites including SAMPEX, HEO, ACE, POES, and FAST. The observations suggest that the dropout may have been caused by two separate mechanisms that operate at high and low L-shells, respectively, with a separation at L ∼ 5. At high L-shells (L > 5), the dropout is approximately independent of energy and consistent with losses to the magnetopause aided by the Dst effect and outward radial diffusion which can deplete relativistic electrons down to lower L-shells. At low L-shells (L < 5), the dropout is strongly energy-dependent, with the higher-energy electrons being affected most. Moreover, large precipitation bands of both relativistic electrons and energetic protons are observed at low L. . .
Date: 12/2006 Publisher: Journal of Geophysical Research DOI: 10.1029/2006JA011802 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2006JA011802/abstract
More Details
Authors: Fei Yue, Chan Anthony A, Elkington Scot R, and Wiltberger Michael J
Title: Radial diffusion and MHD particle simulations of relativistic electron transport by ULF waves in the September 1998 storm
Abstract: In an MHD particle simulation of the September 1998 magnetic storm the evolution of the radiation belt electron radial flux profile appears to be diffusive, and diffusion caused by ULF waves has been invoked as the probable mechanism. In order to separate adiabatic and nonadiabatic effects and to investigate the radial diffusion mechanism during this storm, in this work we solve a radial diffusion equation with ULF wave diffusion coefficients and a time-dependent outer boundary condition, and the results are compared with the phase space density of the MHD particle simulation. The diffusion coefficients include contributions from both symmetric resonance modes (ω ≈ mωd, where ω is the wave frequency, m is the azimuthal wave number, and ωd is the bounce-averaged drift frequency) and . . .
Date: 12/2006 Publisher: Journal of Geophysical Research DOI: 10.1029/2005JA011211 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2005JA011211/abstract
More Details
Authors: Shprits Y Y, Thorne R M, Friedel R, Reeves G D, Fennell J, et al.
Title: Outward radial diffusion driven by losses at magnetopause
Abstract: Loss mechanisms responsible for the sudden depletions of the outer electron radiation belt are examined based on observations and radial diffusion modeling, with L*-derived boundary conditions. SAMPEX data for October–December 2003 indicate that depletions often occur when the magnetopause is compressed and geomagnetic activity is high, consistent with outward radial diffusion for L* > 4 driven by loss to the magnetopause. Multichannel Highly Elliptical Orbit (HEO) satellite observations show that depletions at higher L occur at energies as low as a few hundred keV, which excludes the possibility of the electromagnetic ion cyclotron (EMIC) wave-driven pitch angle scattering and loss to the atmosphere at L* > 4. We further examine the viability of the outward radial diffusion loss by comp. . .
Date: 11/2006 Publisher: Journal of Geophysical Research DOI: 10.1029/2006JA011657 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2006JA011657/abstract
More Details
Authors: Ukhorskiy A Y, Anderson B J, Brandt P C, and Tsyganenko N A
Title: Storm time evolution of the outer radiation belt: Transport and losses
Abstract: During geomagnetic storms the magnetic field of the inner magnetosphere exhibits large-scale variations over timescales from minutes to days. Being mainly controlled by the magnetic field the motion of relativistic electrons of the outer radiation belt can be highly susceptible to its variations. This paper investigates evolution of the outer belt during the 7 September 2002 storm. Evolution of electron phase space density is calculated with the use of a test-particle simulation in storm time magnetic and electric fields. The results show that storm time intensification of the ring current produces a large impact on the belt. In contrast to the conventional Dst effect the dominant effects are nonadiabatic and lead to profound and irreversible transformations of the belt. The diamagnetic in. . .
Date: 11/2006 Publisher: Journal of Geophysical Research DOI: 10.1029/2006JA011690 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2006JA011690/abstract
More Details
Authors: Sarris T, Li X, and Temerin M
Title: Simulating radial diffusion of energetic (MeV) electrons through a model of fluctuating electric and magnetic fields
Abstract: In the present work, a test particle simulation is performed in a model of analytic Ultra Low Frequency, ULF, perturbations in the electric and magnetic fields of the Earth's magnetosphere. The goal of this work is to examine if the radial transport of energetic particles in quiet-time ULF magnetospheric perturbations of various azimuthal mode numbers can be described as a diffusive process and be approximated by theoretically derived radial diffusion coefficients. In the model realistic compressional electromagnetic field perturbations are constructed by a superposition of a large number of propagating electric and consistent magnetic pulses. The diffusion rates of the electrons under the effect of the fluctuating fields are calculated numerically through the test-particle simulation as a. . .
Date: 10/2006 Publisher: Annales Geophysicae Pages: 2583 - 2598 DOI: 10.5194/angeo-24-2583-2006 Available at: http://www.ann-geophys.net/24/2583/2006/angeo-24-2583-2006.html
More Details
Authors: Baker Daniel N., and Lanzerotti Louis
Title: Where Are the "Killer Electrons" of the Declining Phase of Solar Cycle 23
Abstract: “Killer electrons,” enhanced fluxes of radiation belt electrons in the magnetosphere–especially those at geosynchronous orbit (GEO)–were an important space weather phenomenon during the decline to minimum of the last 11-year solar cycle (1993–1995). Indeed, the fluxes of these electrons were reported at the time to have significantly influenced the incidence of anomalies on numerous spacecraft, both commercial and national defense. The incidences of spacecraft anomalies and the “pumping up” of the GEO electron fluxes gave rise to the picture that solar minimum did not provide a benign environment for space-based technologies as had been assumed by many. The decline to minimum of this current (23th) solar cycle has as yet to produce the same number of reported spacecra. . .
Date: 07/2006 Publisher: Space Weather DOI: 10.1029/2006SW000259 Available at: http://www.agu.org/pubs/crossref/2006/2006SW000259.shtml
More Details
Authors: Meredith Nigel P, Horne Richard B, Glauert Sarah A, Thorne Richard M, Summers D., et al.
Title: Energetic outer zone electron loss timescales during low geomagnetic activity
Abstract: Following enhanced magnetic activity the fluxes of energetic electrons in the Earth's outer radiation belt gradually decay to quiet-time levels. We use CRRES observations to estimate the energetic electron loss timescales and to identify the principal loss mechanisms. Gradual loss of energetic electrons in the region 3.0 ≤ L ≤ 5.0 occurs during quiet periods (Kp < 3−) following enhanced magnetic activity on timescales ranging from 1.5 to 3.5 days for 214 keV electrons to 5.5 to 6.5 days for 1.09 MeV electrons. The intervals of decay are associated with large average values of the ratio fpe/fce (>7), indicating that the decay takes place in the plasmasphere. We compute loss timescales for pitch-angle scattering by plasmaspheric hiss using the PADIE code with wave properties based on C. . .
Date: 05/2006 Publisher: Journal of Geophysical Research DOI: 10.1029/2005JA011516 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2005JA011516/abstract
More Details
Authors: Iles Roger H A, Meredith Nigel P, Fazakerley Andrew N, and Horne Richard B
Title: Phase space density analysis of the outer radiation belt energetic electron dynamics
Abstract: We present an analysis of the electron phase space density in the Earth's outer radiation belt during three magnetically disturbed periods to determine the likely roles of inward radial diffusion and local acceleration in the energization of electrons to relativistic energies. During the recovery phase of the 9 October 1990 storm and the period of prolonged substorms between 11 and 16 September 1990, the relativistic electron phase space density increases substantially and peaks in the phase space density occur in the region 4.0 < L* < 5.5 for values of the first adiabatic invariant, M ≥ 550 MeV/G, corresponding to energies, E > ∼0.8 MeV. The peaks in the phase space density are associated with prolonged substorm activity, enhanced chorus amplitudes, and predominantly low values of the. . .
Date: 03/2006 Publisher: Journal of Geophysical Research DOI: 10.1029/2005JA011206 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2005JA011206/abstract
More Details
Authors: Elkington Scot R, Takahashi K, Chi Peter J, Denton Richard E, and Lysak Robert L
Title: A review of ULF interactions with radiation belt electrons
Abstract: Energetic particle fluxes in the outer zone radiation belts can vary over orders of magnitude on a variety of timescales. Power at ULF frequencies, on the order of a few millihertz, have been associated with changes in flux levels among relativis- tic electrons comprising the outer zone of the radiation belts. Power in this part of the spectrum may occur as a result of a number of processes, including internally- generated waves induced by plasma instabilities, and externally generated processes such as shear instabilities at the flanks or compressive variations in the solar wind. Changes in the large-scale convective motion of the magnetosphere are another important class of externally driven variations with power at ULF wavelengths. The mechanism for interaction between ULF vari. . .
Date: Publisher: American Geophysical Union Pages: 177 - 193 DOI: 10.1029/169GM12 Available at: http://onlinelibrary.wiley.com/doi/10.1029/169GM12/summary
More Details
2005
Authors: Ukhorskiy A Y, Takahashi K, Anderson B. J., and Korth H.
Title: Impact of toroidal ULF waves on the outer radiation belt electrons
Abstract: Relativistic electron fluxes in the outer radiation belt exhibit highly variable complex behavior. Previous studies have established a strong correlation of electron fluxes and the inner magnetospheric ULF waves in the Pc 3–5 frequency range. Resonant interaction of ULF waves with the drift motion of radiation belt electrons violates their third adiabatic invariant and consequently leads to their radial transport. If the wave-particle interaction has a stochastic character, then the electron transport is diffusive. The goal of this paper is to analyze the impact of toroidal ULF waves on radiation belt electrons. The study is based on direct measurements of ULF electric fields on the CRRES spacecraft. We show that the electric fields of inner magnetospheric toroidal ULF waves exhibit high. . .
Date: 10/2005 Publisher: Journal of Geophysical Research DOI: 10.1029/2005JA011017 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2005JA011017/abstract
More Details
Authors: Thorne R M, O'Brien T. P., Shprits Y. Y., Summers D., and Horne R. B.
Title: Timescale for MeV electron microburst loss during geomagnetic storms
Abstract: Energetic electrons in the outer radiation belt can resonate with intense bursts of whistler-mode chorus emission leading to microburst precipitation into the atmosphere. The timescale for removal of outer zone MeV electrons during the main phase of the October 1998 magnetic storm has been computed by comparing the rate of microburst loss observed on SAMPEX with trapped flux levels observed on Polar. Effective lifetimes are comparable to a day and are relatively independent of L shell. The lifetimes have also been evaluated by theoretical calculations based on quasi-linear scattering by field-aligned waves. Agreement with the observations requires average wide-band wave amplitudes comparable to 100 pT, which is consistent with the intensity of chorus emissions observed under active conditi. . .
Date: 09/2005 Publisher: Journal of Geophysical Research DOI: 10.1029/2004JA010882 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2004JA010882/abstract
More Details
Authors: Horne Richard B, Thorne Richard M, Shprits Yuri Y, Meredith Nigel P, Glauert Sarah A, et al.
Title: Wave acceleration of electrons in the Van Allen radiation belts
Abstract: The Van Allen radiation belts1 are two regions encircling the Earth in which energetic charged particles are trapped inside the Earth's magnetic field. Their properties vary according to solar activity2, 3 and they represent a hazard to satellites and humans in space4, 5. An important challenge has been to explain how the charged particles within these belts are accelerated to very high energies of several million electron volts. Here we show, on the basis of the analysis of a rare event where the outer radiation belt was depleted and then re-formed closer to the Earth6, that the long established theory of acceleration by radial diffusion is inadequate; the electrons are accelerated more effectively by electromagnetic waves at frequencies of a few kilohertz. Wave acceleration can increase . . .
Date: 09/2005 Publisher: Nature Pages: 227 - 230 DOI: 10.1038/nature03939 Available at: http://www.nature.com/nature/journal/v437/n7056/full/nature03939.html
More Details
Authors: Mithaiwala M J, and Horton W.
Title: Substorm injections produce sufficient electron energization to account for MeV flux enhancements following some storms
Abstract: One of the main questions concerning radiation belt research is the origin of very high energy (>1 MeV) electrons following many space storms. Under the hypothesis that the plasma sheet electron population is the source of these electrons, which are convected to the outer radiation belt region during substorms, we estimate the flux of particles generated at geosynchronous orbit. We use the test particle method of following guiding center electrons as they drift in the electromagnetic fields during substorm dipolarization. The dipolarization pulse model electromagnetic fields are taken from the Li et al. (1998) substorm particle injection model. We find that a substorm dipolarization can produce enough electrons within geosynchronous orbit to account for the electrons seen following storms.. . .
Date: 07/2005 Publisher: Journal of Geophysical Research DOI: 10.1029/2004JA010511 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2004JA010511/abstract
More Details
Authors: Albert J M
Title: Evaluation of quasi-linear diffusion coefficients for whistler mode waves in a plasma with arbitrary density ratio
Abstract: Techniques are presented for efficiently evaluating quasi-linear diffusion coefficients for whistler mode waves propagating according to the full cold plasma index of refraction. In particular, the density ratio ωpe/Ωe can be small, which favors energy diffusion. This generalizes an approach, previously used for high-density hiss and electromagnetic ion cyclotron waves, of identifying (and omitting) ranges of wavenormal angle θ that are incompatible with cyclotron resonant frequencies ω occurring between sharp cutoffs of the modeled wave frequency spectrum. This requires a detailed analysis of the maximum and minimum values of the refractive index as a function of ω and θ, as has previously been performed in the high-density approximation. Sample calculations show the effect of low-d. . .
Date: 03/2005 Publisher: Journal of Geophysical Research DOI: 10.1029/2004JA010844 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2004JA010844/abstract
More Details
Authors: Perry K L, Hudson M K, and Elkington S. R.
Title: Incorporating spectral characteristics of Pc5 waves into three-dimensional radiation belt modeling and the diffusion of relativistic electrons
Abstract: The influence of ultralow frequency (ULF) waves in the Pc5 frequency range on radiation belt electrons in a compressed dipole magnetic field is examined. This is the first analysis in three dimensions utilizing model ULF wave electric and magnetic fields on the guiding center trajectories of relativistic electrons. A model is developed, describing magnetic and electric fields associated with poloidal mode Pc5 ULF waves. The frequency and L dependence of the ULF wave power are included in this model by incorporating published ground-based magnetometer data. It is demonstrated here that realistic spectral characteristics play a significant role in the rate of diffusion of relativistic electrons via drift resonance with poloidal mode ULF waves. Radial diffusion rates including bounce motion s. . .
Date: 03/2005 Publisher: Journal of Geophysical Research DOI: 10.1029/2004JA010760 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2004JA010760/abstract
More Details
2004
Authors: Baker D N, Kanekal S G, Li X, Monk S P, Goldstein J, et al.
Title: An extreme distortion of the Van Allen belt arising from the ‘Hallowe’en’ solar storm in 2003
Abstract: The Earth's radiation belts—also known as the Van Allen belts1—contain high-energy electrons trapped on magnetic field lines2, 3. The centre of the outer belt is usually 20,000–25,000 km from Earth. The region between the belts is normally devoid of particles2, 3, 4, and is accordingly favoured as a location for spacecraft operation because of the benign environment5. Here we report that the outer Van Allen belt was compressed dramatically by a solar storm known as the ‘Hallowe'en storm’ of 2003. From 1 to 10 November, the outer belt had its centre only ~10,000 km from Earth's equatorial surface, and the plasmasphere was similarly displaced inwards. The region between the belts became the location of high particle radiation intensity. This remarkable deformation of the entire. . .
Date: 12/2004 Publisher: Nature Pages: 878 - 881 DOI: 10.1038/nature03116 Available at: http://www.nature.com/nature/journal/v432/n7019/full/nature03116.html
More Details
Authors: Shprits Y Y, and Thorne R. M.
Title: Time dependent radial diffusion modeling of relativistic electrons with realistic loss rates
Abstract: Model simulations are compared to the typically observed evolution of MeV electron fluxes during geomagnetic storms to investigate whether radial diffusion alone can account for the observed variability and to estimate the effect of electron lifetimes. We demonstrate that knowledge of lifetimes is crucial for understanding the radial structure of the storm-time radiation belts and their temporal evolution. Our model results suggest that outer zone lifetimes at 1 MeV are on the order of few days during quite-times and less than a day during storm-time conditions. Losses outside plasmasphere should be included in the modeling of electron fluxes since effective lifetimes are much shorter than that of plasmaspheric losses. Simulations with variable outer boundary conditions show that the deple. . .
Date: 04/2004 Publisher: Geophysical Research Letters DOI: 10.1029/2004GL019591 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2004GL019591/abstract
More Details
Authors: Green Janet C, and Kivelson M. G.
Title: Relativistic electrons in the outer radiation belt: Differentiating between acceleration mechanisms
Abstract: Many theoretical models have been developed to explain the rapid acceleration to relativistic energies of electrons that form the Earth's radiation belts. However, after decades of research, none of these models has been unambiguously confirmed by comparison to observations. Proposed models can be separated into two types: internal and external source acceleration mechanisms. Internal source acceleration mechanisms accelerate electrons already present in the inner magnetosphere (L < 6.6), while external source acceleration mechanisms transport and accelerate a source population of electrons from the outer to the inner magnetosphere. In principle, the two types of acceleration mechanisms can be differentiated because they imply that different radial gradients of electron phase space density. . .
Date: 03/2004 Publisher: Journal of Geophysical Research DOI: 10.1029/2003JA010153 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2003JA010153/abstract
More Details
Authors: O’Brien T P, Looper M. D., and Blake J. B.
Title: Quantification of relativistic electron microburst losses during the GEM storms
Abstract: Bursty precipitation of relativistic electrons has been implicated as a major loss process during magnetic storms. One type of precipitation, microbursts, appears to contain enough electrons to empty the prestorm outer radiation belt in approximately a day. During storms that result in high fluxes of trapped relativistic electrons, microbursts continue for several days into the recovery phase, when trapped fluxes are dramatically increasing. The present study shows that this apparent inconsistency is resolved by observations that the number of electrons lost through microbursts is 10–100 times larger during the main phase than during the recovery phase of several magnetic storms chosen by the Geospace Environment Modeling (GEM) program.
Date: 02/2004 Publisher: Geophysical Research Letters DOI: 10.1029/2003GL018621 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2003GL018621/abstract
More Details
2003
Authors: O’Brien T P, Lorentzen K. R., Mann I. R., Meredith N. P., Blake J. B., et al.
Title: Energization of relativistic electrons in the presence of ULF power and MeV microbursts: Evidence for dual ULF and VLF acceleration
Abstract: We examine signatures of two types of waves that may be involved in the acceleration of energetic electrons in Earth's outer radiation belts. We have compiled a database of ULF wave power from SAMNET and IMAGE ground magnetometer stations for 1987–2001. Long-duration, comprehensive, in situ VLF/ELF chorus wave observations are not available, so we infer chorus wave activity from low-altitude SAMPEX observations of MeV electron microbursts for 1996–2001 since microbursts are thought to be caused by interactions between chorus and trapped electrons. We compare the ULF and microburst observations to in situ trapped electrons observed by high-altitude satellites from 1989–2001. We find that electron acceleration at low L shells is closely associated with both ULF activity and MeV microbu. . .
Date: 08/2003 Publisher: Journal of Geophysical Research DOI: 10.1029/2002JA009784 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2002JA009784/abstract
More Details
Authors: Albert J M
Title: Evaluation of quasi-linear diffusion coefficients for EMIC waves in a multispecies plasma
Abstract: Quasi-linear velocity-space diffusion coefficients due to L-mode electromagnetic ion cyclotron (EMIC) waves are considered in a multispecies plasma. It is shown, with slight approximations to exact cold plasma theory, that within EMIC pass bands the index of refraction is a monotonically increasing function of frequency. Analytical criteria are then derived which identify ranges of latitude, wavenormal angle, and resonance number consistent with resonance in a prescribed wave population. This leads to computational techniques which allow very efficient calculation of the diffusion coefficients, along the lines previously developed for whistler and ion cyclotron waves in an electron-proton plasma. The techniques are applied to radiation belt electrons at L = 4, for EMIC waves in the hydroge. . .
Date: 06/2003 Publisher: Journal of Geophysical Research DOI: 10.1029/2002JA009792 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2002JA009792/abstract
More Details
Authors: Meredith Nigel P, Cain Michelle, Horne Richard B., Thorne Richard M., Summers D., et al.
Title: Evidence for chorus-driven electron acceleration to relativistic energies from a survey of geomagnetically disturbed periods
Abstract: We perform a survey of the plasma wave and particle data from the CRRES satellite during 26 geomagnetically disturbed periods to investigate the viability of a local stochastic electron acceleration mechanism to relativistic energies driven by Doppler-shifted cyclotron resonant interactions with whistler mode chorus. Relativistic electron flux enhancements associated with moderate or strong storms may be seen over the whole outer zone (3 < L < 7), typically peaking in the range 4 < L < 5, whereas those associated with weak storms and intervals of prolonged substorm activity lacking a magnetic storm signature (PSALMSS) are typically observed further out in the regions 4 < L < 7 and 4.5 < L < 7, respectively. The most significant relativistic electron flux enhancements are seen outside of th. . .
Date: 06/2003 Publisher: Journal of Geophysical Research DOI: 10.1029/2002JA009764 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2002JA009764/abstract
More Details

Pages