Biblio

Found 707 results

Pages

2013
Authors: Harvey Raymond J., and Eichstedt John
Title: Van Allen Probes Low Cost Mission Operations Concept and Lessons Learned
Abstract: Following a successful 60-day commissioning period, NASA’s Radiation Belt Storm Probes (RBSP) mission, was renamed Van Allen Probes in honor of the discoverer of Earth’s radiation belts – James Van Allen. The Johns Hopkins University’s Applied Physics Laboratory (APL) executed the mission and is currently operating the twin spacecraft in their primary mission. Improving on the cost-savings concepts employed by prior APL projects, the Van Allen Probes mission operations was designed from the start for low-cost, highly-automated mission operations. This concept is realized with automated initial planning and contact scheduling, unattended real-time operations, and spacecraft performance assessment from the review of data products that have been automatically generat. . .
Date: 09/2013 Publisher: American Institute of Aeronautics and Astronautics DOI: 10.2514/MSPACE1310.2514/6.2013-5450 Available at: http://arc.aiaa.org/doi/abs/10.2514/6.2013-5450
More Details
Authors: Claudepierre S G, Mann I R, Takahashi K, Fennell J F, Hudson M K, et al.
Title: Van Allen Probes observation of localized drift-resonance between poloidal mode ultra-low frequency waves and 60 keV electrons
Abstract: [1] We present NASA Van Allen Probes observations of wave-particle interactions between magnetospheric ultra-low frequency (ULF) waves and energetic electrons (20–500 keV) on 31 October 2012. The ULF waves are identified as the fundamental poloidal mode oscillation and are excited following an interplanetary shock impact on the magnetosphere. Large amplitude modulations in energetic electron flux are observed at the same period (≈ 3 min) as the ULF waves and are consistent with a drift-resonant interaction. The azimuthal mode number of the interacting wave is estimated from the electron measurements to be ~40, based on an assumed symmetric drift resonance. The drift-resonant interaction is observed to be localized and occur over 5–6 wave cycles, demonstrating peak electron flux modul. . .
Date: 09/2013 Publisher: Geophysical Research Letters Pages: 4491–4497 DOI: 10.1002/grl.50901 Available at: http://onlinelibrary.wiley.com/doi/10.1002/grl.50901/full
More Details
Authors: Mauk B H
Title: Analysis of EMIC-wave-moderated flux limitation of measured energetic ion spectra in multispecies magnetospheric plasmas
Abstract: A differential Kennel-Petschek (KP) flux limit for magnetospheric energetic ions is devised taking into account multiple ion species effects on electromagnetic ion cyclotron (EMIC) waves that scatter the ions. The idea is that EMIC waves may limit the highest ion intensities during acceleration phases of storms and substorms (~ hour) while other mechanisms (e.g., charge exchange) may account for losses below those limits and over longer periods of time. This approach is applied to published Earth magnetosphere energetic ion spectra (~ keV to ~1 MeV) for radial positions (L) 3 to 6.7 RE. The flatness of the most intense spectral shapes for <100 keV indicate sculpting by just such a mechanism, but modifications of traditional KP parameters are needed to account for maximum fluxes up to 5. . .
Date: 08/2013 Publisher: Geophysical Research Letters Pages: 3804 - 3808 DOI: 10.1002/grl.50789 Available at: http://doi.wiley.com/10.1002/grl.50789
More Details
Authors: Dai L, Takahashi K, Wygant J R, Chen L, Bonnell J W, et al.
Title: Excitation of Poloidal standing Alfven waves through the drift resonance wave-particle interaction
Abstract: Drift-resonance wave-particle interaction is a fundamental collisionless plasma process studied extensively in theory. Using cross-spectral analysis of electric field, magnetic field, and ion flux data from the Van Allen Probe (Radiation Belt Storm Probes) spacecraft, we present direct evidence identifying the generation of a fundamental mode standing poloidal wave through drift-resonance interactions in the inner magnetosphere. Intense azimuthal electric field (Eφ) oscillations as large as 10mV/m are observed, associated with radial magnetic field (Br) oscillations in the dawn-noon sector near but south of the magnetic equator at L∼5. The observed wave period, Eφ/Br ratio and the 90° phase lag between Br and Eφ are all consistent with fundamental mode standing Poloidal waves. Phase . . .
Date: 08/2013 Publisher: Geophysical Research Letters DOI: 10.1002/grl.50800 Available at: http://onlinelibrary.wiley.com/doi/10.1002/grl.50800/full
More Details
Authors: Funsten H O, Skoug R M, Guthrie A A, MacDonald E A, Baldonado J R, et al.
Title: Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer for the Radiation Belt Storm Probes Mission
Abstract: The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution ΔE FWHM/E≈15 %. The dominant ion species (H+, He+, and O+) of the magnetosphere are identified using foil-based time-of-flight (TOF) mass spectrometry with channel electron multiplier (CEM) detectors. Angular measurements are derived using five polar pixels coplanar with the spacecraft spin. . .
Date: 08/2013 Publisher: Space Science Reviews DOI: 10.1007/s11214-013-9968-7 Available at: http://link.springer.com/article/10.1007%2Fs11214-013-9968-7
More Details
Authors: Artemyev A. V., Agapitov O. V., Mourenas D., Krasnoselskikh V., and Zelenyi L. M.
Title: Storm-induced energization of radiation belt electrons: Effect of wave obliquity
Abstract: New Cluster statistics allow us to determine for the first time the variations of both the obliquity and intensity of lower-band chorus waves as functions of latitude and geomagnetic activity near L∼5. The portion of wave power in very oblique waves decreases during highly disturbed periods, consistent with increased Landau damping by inward-penetrating suprathermal electrons. Simple analytical considerations as well as full numerical calculations of quasi-linear diffusion rates demonstrate that early-time electron acceleration occurs in a regime of loss-limited energization. In this regime, the average wave obliquity plays a critical role in mitigating lifetime reduction as wave intensity increases with geomagnetic activity, suggesting that much larger energization levels should be reac. . .
Date: 08/2013 Publisher: Geophysical Research Letters Pages: 4138 - 4143 DOI: 10.1002/grl.50837 Available at: http://doi.wiley.com/10.1002/grl.50837
More Details
Authors: Li W, Thorne R M, Bortnik J, Reeves G D, Kletzing C A, et al.
Title: An unusual enhancement of low-frequency plasmaspheric hiss in the outer plasmasphere associated with substorm-injected electrons
Abstract: Both plasmaspheric hiss and chorus waves were observed simultaneously by the two Van Allen Probes in association with substorm-injected energetic electrons. Probe A, located inside the plasmasphere in the postdawn sector, observed intense plasmaspheric hiss, whereas Probe B observed chorus waves outside the plasmasphere just before dawn. Dispersed injections of energetic electrons were observed in the dayside outer plasmasphere associated with significant intensification of plasmaspheric hiss at frequencies down to ~20 Hz, much lower than typical hiss wave frequencies of 100–2000 Hz. In the outer plasmasphere, the upper energy of injected electrons agrees well with the minimum cyclotron resonant energy calculated for the lower cutoff frequency of the observed hiss, and computed conve. . .
Date: 08/2013 Publisher: Geophysical Research Letters Pages: 3798 - 3803 DOI: 10.1002/grl.50787 Available at: http://doi.wiley.com/10.1002/grl.50787
More Details
Authors: Reeves G D, Spence H E, Henderson M G, Morley S. K., Friedel R H W, et al.
Title: Electron Acceleration in the Heart of the Van Allen Radiation Belts
Abstract: The Van Allen radiation belts contain ultrarelativistic electrons trapped in Earth’s magnetic field. Since their discovery in 1958, a fundamental unanswered question has been how electrons can be accelerated to such high energies. Two classes of processes have been proposed: transport and acceleration of electrons from a source population located outside the radiation belts (radial acceleration) or acceleration of lower-energy electrons to relativistic energies in situ in the heart of the radiation belts (local acceleration). We report measurements from NASA’s Van Allen Radiation Belt Storm Probes that clearly distinguish between the two types of acceleration. The observed radial profiles of phase space density are characteristic of local acceleration in the heart of the radiation belt. . .
Date: 07/2013 Publisher: Science Pages: 991 - 994 DOI: 10.1126/science.1237743 Available at: http://www.sciencemag.org/cgi/doi/10.1126/science.1237743
More Details
Authors: Butler M. H.
Title: The Van Allen Probes Power System Launch and Early Mission Performance
Abstract: The Van Allen Probes are twin NASA spacecraft that were launched August 30, 2012, into lapping highly elliptical earth orbits. The twin spacecraft will operate within the Van Allen radiation belts throughout their two-year mission. The Van Allen Probes are sponsored by NASA’s Living With a Star (LWS) Program. The Johns Hopkins University, Applied Physics Laboratory designed, fabricated, and operates the twin spacecraft for NASA. The power systems of the twin spacecraft are identical. A direct energy transfer topology was selected for the power system. The loads are connected directly to the eight-cell Lithium Ion battery. The solar panels consist of triple junction cells. The design average power of each spacecraft is about 350 Watts, nominal 28.8 volt bus. A single 50 AH . . .
Date: 07/2013 Publisher: American Institute of Aeronautics and Astronautics DOI: 10.2514/MIECEC1310.2514/6.2013-3737 Available at: http://arc.aiaa.org/doi/abs/10.2514/6.2013-3737
More Details
Authors: Thorne R M, Li W, Ni B, Ma Q, Bortnik J, et al.
Title: Evolution and slow decay of an unusual narrow ring of relativistic electrons near L ~ 3.2 following the September 2012 magnetic storm
Abstract: A quantitative analysis is performed on the decay of an unusual ring of relativistic electrons between 3 and 3.5 RE, which was observed by the Relativistic Electron Proton Telescope instrument on the Van Allen probes. The ring formed on 3 September 2012 during the main phase of a magnetic storm due to the partial depletion of the outer radiation belt for L > 3.5, and this remnant belt of relativistic electrons persisted at energies above 2 MeV, exhibiting only slow decay, until it was finally destroyed during another magnetic storm on 1 October. This long-term stability of the relativistic electron ring was associated with the rapid outward migration and maintenance of the plasmapause to distances greater than L = 4. The remnant ring was thus immune from the dynamic process, whic. . .
Date: 06/2013 Publisher: Geophysical Research Letters DOI: 10.1002/grl.50627 Available at: http://onlinelibrary.wiley.com/doi/10.1002/grl.50627/full
More Details
Authors: Min Kyungguk, Bortnik J, and Lee Jeongwoo
Title: A novel technique for rapid L∗ calculation: algorithm and implementation
Abstract: Computing the magnetic drift invariant, L*, rapidly and accurately has always been a challenge to magnetospheric modelers, especially given the im- portance of this quantity in the radiation belt community. Min et al. (2013) proposed a new method of calculating L* using the principle of energy con- servation. Continuing with the approach outlined therein, the present pa- per focuses on the technical details of the algorithm to outline the implemen- tation, systematic analysis of accuracy, and verification of the speed of the new method. We also show new improvements which enable near real-time computation of L*. The relative error is on the order of 10−3 when ∼ 0.1 RE grid resolution is used and the calculation speed is about two seconds per particle in the popular Tsyganenko. . .
Date: 05/2013 Publisher: Journal of Geophysical Research Pages: 1912-1921 DOI: 10.1002/jgra.50250 Available at: http://onlinelibrary.wiley.com/doi/10.1002/jgra.50250/full
More Details
Authors: Lee Jeongwoo, Min Kyungguk, and Kim Kap-Sung
Title: Characteristic dimension of electromagnetic ion cyclotron wave activity in the magnetosphere
Abstract: [1] In this paper, we estimate the size of coherent activity of electromagnetic ion cyclotron (EMIC) waves using the multi‒spacecraft observations made during the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission. We calculate the cross‒correlations between EMIC wave powers measured by different THEMIS spacecraft, plot them over the separation distances between pairs of observing spacecraft, and determine the 1/e folding distance of the correlations as the characteristic dimension of the coherent wave activity. The characteristic radius in the direction transverse to the local magnetic field is found to lie in rather a wide range of 1500–8600 km varying from the AM to PM sectors and also from hydrogen to helium bands. However, the characteristic d. . .
Date: 04/2013 Publisher: Journal of Geophysical Research: Space Physics Pages: 1651 - 1658 DOI: 10.1002/jgra.50242 Available at: http://doi.wiley.com/10.1002/jgra.50242
More Details
Authors: Baker D N, Kanekal S G, Hoxie V C, Henderson M G, Li X, et al.
Title: A Long-Lived Relativistic Electron Storage Ring Embedded in Earth's Outer Van Allen Belt
Abstract: Since their discovery more than 50 years ago, Earth’s Van Allen radiation belts have been considered to consist of two distinct zones of trapped, highly energetic charged particles. The outer zone is composed predominantly of megaelectron volt (MeV) electrons that wax and wane in intensity on time scales ranging from hours to days, depending primarily on external forcing by the solar wind. The spatially separated inner zone is composed of commingled high-energy electrons and very energetic positive ions (mostly protons), the latter being stable in intensity levels over years to decades. In situ energy-specific and temporally resolved spacecraft observations reveal an isolated third ring, or torus, of high-energy (>2 MeV) electrons that formed on 2 September 2012 and persisted largely unc. . .
Date: 04/2013 Publisher: Science Pages: 186-190 DOI: 10.1126/science.1233518 Available at: http://www.sciencemag.org/content/340/6129/186
More Details
Authors: Kirby Karen, and Stratton Jim
Title: Van Allen Probes: Successful launch campaign and early operations exploring Earth's radiation belts
Abstract: The twin Van Allen Probe observatories developed at The Johns Hopkins University Applied Physics Laboratory for NASA's Heliophysics Division completed final observatory integration and environmental test activities and were successfully launched into orbit around the Earth on August 30, 2012. As the science operations phase begins, the mission is providing exciting new information about the impact of radiation belt activity on the earth. The on-board boom mounted magnetometers and other instruments are the most sensitive sensors of their type that have ever flown in the Van Allen radiation belts. The observatories are producing near-Earth space weather information that can be used to provide warnings of potential power grid interruptions or satellite damaging storms. The Van Allen Probes a. . .
Date: 03/2013 Publisher: IEEE DOI: 10.1109/AERO.2013.6496838 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6496838
More Details
Authors: Stratton J M, Harvey R J, and Heyler G A
Title: Mission Overview for the Radiation Belt Storm Probes Mission
Abstract: Provided here is an overview of Radiation Belt Storm Probes (RBSP) mission design. The driving mission and science requirements are presented, and the unique engineering challenges of operating in Earth’s radiation belts are discussed in detail. The implementation of both the space and ground segments are presented, including a discussion of the challenges inherent with operating multiple observatories concurrently and working with a distributed network of science operation centers. An overview of the launch vehicle and the overall mission design will be presented, and the plan for space weather data broadcast will be introduced.
Date: 01/2013 Publisher: Space Science Reviews DOI: 10.1007/s11214-012-9933-x Available at: http://link.springer.com/article/10.1007%2Fs11214-012-9933-x
More Details
Authors: Min Kyungguk, Bortnik J, and Lee Jeongwoo
Title: A novel technique for rapid L* calculation using UBK coordinates
Abstract: [1] The magnetic drift invariant (L*) is an important quantity used for tracking and organizing particle dynamics in the radiation belts, but its accurate calculation has been computationally expensive in the past, thus making it difficult to employ this quantity in real-time space weather applications. In this paper, we propose a new, efficient method to calculate L* using the principle of energy conservation. This method uses Whipple's (U, B, K) coordinates to quickly and accurately determine trajectories of particles at the magnetic mirror point from two-dimensional isoenergy contours. The method works for any magnetic field configuration and is able to accommodate constant electric potential along field lines. We compare the result of this method with those of International Radiation B. . .
Date: 01/2013 Publisher: Journal of Geophysical Research DOI: 10.1029/2012JA018177
More Details
Authors: Ukhorskiy A Y, Sitnov M I, Merkin V. G., and Artemyev A. V.
Title: Rapid acceleration of protons upstream of earthward propagating dipolarization fronts
Abstract: [1] Transport and acceleration of ions in the magnetotail largely occurs in the form of discrete impulsive events associated with a steep increase of the tail magnetic field normal to the neutral plane (Bz), which are referred to as dipolarization fronts. The goal of this paper is to investigate how protons initially located upstream of earthward moving fronts are accelerated at their encounter. According to our analytical analysis and simplified two-dimensional test-particle simulations of equatorially mirroring particles, there are two regimes of proton acceleration: trapping and quasi-trapping, which are realized depending on whether the front is preceded by a negative depletion in Bz. We then use three-dimensional test-particle simulations to investigate how these acceleration processe. . .
Date: 01/2013 Publisher: Journal of Geophysical Research: Space Physics Pages: 4952–4962, DOI: 10.1002/jgra.50452 Available at: http://doi.wiley.com/10.1002/jgra.50452
More Details
Authors: Fox N. J., and Burch J. L.
Title: The Van Allen Probes Mission
Abstract: N/A
Date: Publisher: Springer Pages: 646 DOI: N/A Available at: http://www.springer.com/astronomy/extraterrestrial+physics,+space+sciences/book/978-1-4899-7432-7
More Details
2012
Authors: Brito T, Woodger L, Hudson M K, and MILLAN R
Title: Energetic radiation belt electron precipitation showing ULF modulation
Abstract: 1] The energization and loss processes for energetic radiation belt electrons are not yet well understood. Ultra Low Frequency (ULF) waves have been correlated with both enhancement in outer zone radiation belt electron flux and modulation of precipitation loss to the atmosphere. This study considers the effects of ULF waves in the Pc-4 to Pc-5 period range (45 s–600 s) on electron loss to the atmosphere on a time scale of several minutes. Global simulations using magnetohydrodynamics (MHD) model fields as drivers provide a valuable tool for studying the dynamics of these ∼MeV energetic particles. ACE satellite measurements of the MHD solar wind parameters are used as the upstream boundary condition for the Lyon-Fedder-Mobarry (LFM) 3D MHD code calculation of fields, used to drive elec. . .
Date: 11/2012 Publisher: Geophysical Research Letters Pages: 28 DOI: 10.1029/2012GL053790 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2012GL053790/full
More Details
Authors: Jordanova V K, Welling D T, Zaharia S G, Chen L, and Thorne R M
Title: Modeling ring current ion and electron dynamics and plasma instabilities during a high-speed stream driven storm
Abstract: 1] The temporal and spatial development of the ring current is evaluated during the 23–26 October 2002 high-speed stream (HSS) storm, using a kinetic ring current-atmosphere interactions model with self-consistent magnetic field (RAM-SCB). The effects of nondipolar magnetic field configuration are investigated on both ring current ion and electron dynamics. As the self-consistent magnetic field is depressed at large (>4RE) radial distances on the nightside during the storm main phase, the particles' drift velocities increase, the ion and electron fluxes are reduced and the ring current is confined closer to Earth. In contrast to ions, the electron fluxes increase closer to Earth and the fractional electron energy reaches ∼20% near storm peak due to better electron trapping in a nondipo. . .
Date: 09/2012 Publisher: Journal of Geophysical Research Pages: 1978–2012 DOI: 10.1029/2011JA017433 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2011JA017433/full
More Details
Authors: Bushman Stewart
Title: Design, Fabrication, and Testing of the Radiation Belt Storm Probes Propulsion Systems
Abstract: The Radiation Belt Storm Probes spacecraft , part of NASA’s Living with a Star program, are scheduled for launch into Earth orbit in August 2012. 1,2,3 The twin spacecraft possess identical blowdown monopropellant hydrazine propulsion systems to provide spinup/spindown, precession, Delt a–V, and deorbit capability. Each spacecraft manifests eight Aerojet 0.2 lbf (0.9 N) MR–103G thrust ers, three ARDÉ Inconel 718 propellant tanks, and other components required to control the fl ow of propellant and monitor system health and performance. The propulsion systems were fabricated and installed by Aerojet Redmond and subsequently tested at the Jo hns Hopkins University / Applied Physics Laboratory (APL) in Laurel, MD. The test se quence at APL included thermal balance; . . .
Date: 08/2012 Publisher: American Institute of Aeronautics and Astronautics DOI: 10.2514/6.2012-4332 Available at: http://arc.aiaa.org/doi/abs/10.2514/6.2012-4332
More Details
Authors: Butler Michael, and Laughery Sean
Title: The RBSP Spacecraft Power System Design and Development
Abstract: The RBSP (Radiation Belt Storm Probes) twin spacecraft are set to launch in August 2012. The spacecraft will be inserted into the highly elliptical regions of high energy particles trapped by the magnetic field of the earth. These regions are often referred to as the Van Allen Belts. The twin spacecraft will operate entirely within the radiation belts throughout their mission. Because of the intense environment of operation and to reduce cost and risk, the approach taken in the power system electronics was to use quasi conventional design, materials, and fabrication techniques encased in a 350mil thick aluminum enclosure. The spacecraft are spin stabilized with an axial boom that creates a shadow across the solar arrays. The power system topology selected was a 28V unregulat. . .
Date: 08/2012 Publisher: American Institute of Aeronautics and Astronautics DOI: 10.2514/MIECEC1210.2514/6.2012-4059 Available at: http://arc.aiaa.org/doi/pdf/10.2514/6.2012-4059
More Details
Authors: Hudson M K, Brito Thiago, Elkington Scot, Kress Brian, Li Zhao, et al.
Title: Radiation belt 2D and 3D simulations for CIR-driven storms during Carrington Rotation 2068
Abstract: As part of the International Heliospheric Year, the Whole Heliosphere Interval, Carrington Rotation 2068, from March 20 to April 16, 2008 was chosen as an internationally coordinated observing and modeling campaign. A pair of solar wind structures identified as Corotating Interaction Regions (CIR), characteristic of the declining phase of the solar cycle and solar minimum, was identified in solar wind plasma measurements from the ACE satellite. Such structures have previously been determined to be geoeffective in producing enhanced outer zone radiation belt electron fluxes, on average greater than at solar maximum. MHD fields from the Coupled Magnetosphere–Ionosphere–Thermosphere (CMIT) model driven by ACE solar wind measurements at L1 have been used to drive both 2D and 3D weighted te. . .
Date: 07/2012 Publisher: Journal of Atmospheric and Solar-Terrestrial Physics Pages: 51 - 62 DOI: 10.1016/j.jastp.2012.03.017 Available at: http://www.sciencedirect.com/science/article/pii/S1364682612001010
More Details
Authors: Min Kyungguk, Lee Jeongwoo, Keika Kunihiro, and Li W
Title: Global distribution of EMIC waves derived from THEMIS observations
Abstract: [1] Electromagnetic ion cyclotron (EMIC) waves play an important role in magnetospheric dynamics and their global distribution has been of great interest. This paper presents the distribution of EMIC waves over a broader range than ever before, as enabled by observations with the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft from 2007 to 2010. Our major findings are: (1) There are two major peaks in the EMIC wave occurrence probability. One is at dusk and 8–12 RE where the helium band dominates the hydrogen band waves. The other is at dawn and 10–12 RE where the hydrogen band dominates the helium band waves. (2) In terms of wave spectral power the dusk events are stronger (≈10 nT2/Hz) than the dawn events (≈3 nT2/Hz). (3) The dawn . . .
Date: 05/2012 Publisher: Journal of Geophysical Research DOI: 10.1029/2012JA017515
More Details
Authors: Kirby Karen, Bushman Stewart, Butler Michael, Conde Rich, Fretz Kristen, et al.
Title: Radiation Belt Storm Probe Spacecraft and Impact of Environment on Spacecraft Design
Abstract: NASA's Radiation Belt Storm Probe (RBSP) is an Earth-orbiting mission scheduled to launch in September 2012 and is the next science mission in NASA's Living with a Star Program. The RBSP mission will investigate, characterize and understand the physical dynamics of the radiation belts, and the influence of the sun on the earth's environment, by measuring particles, electric and magnetic fields and waves that comprise the geospace. The mission is composed of two identically instrumented spinning spacecraft in an elliptical orbit around earth from 600 km perigee to 30,000 km apogee at 10 degree inclination to provide full sampling of the Van Allen radiation belts. The twin spacecraft will follow slightly different orbits and will lap each other 4 times per year; this offers simultaneous meas. . .
Date: 03/2012 Publisher: IEEE DOI: 10.1109/AERO.2012.6187020 Available at: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=06187020
More Details
Authors: Turner Drew L, Shprits Yuri, Hartinger Michael, and Angelopoulos Vassilis
Title: Explaining sudden losses of outer radiation belt electrons during geomagnetic storms
Abstract: The Van Allen radiation belts were first discovered in 1958 by the Explorer series of spacecraft1. The dynamic outer belt consists primarily of relativistic electrons trapped by the Earth’s magnetic field. Magnetospheric processes driven by the solar wind2 cause the electron flux in this belt to fluctuate substantially over timescales ranging from minutes to years3. The most dramatic of these events are known as flux ’dropouts’ and often occur during geomagnetic storms. During such an event the electron flux can drop by several orders of magnitude in just a few hours4, 5 and remain low even after a storm has abated. Various solar wind phenomena, including coronal mass ejections and co-rotating interaction regions6, can drive storm activity, but several outstanding questions remain co. . .
Date: 01/2012 Publisher: Nature Publishing Group Pages: 208–212 DOI: 10.1038/nphys2185 Available at: http://dx.doi.org/10.1038/nphys2185
More Details
Authors: Crabtree C., Rudakov L., Ganguli G., Mithaiwala M., Galinsky V., et al.
Title: Weak turbulence in the magnetosphere: Formation of whistler wave cavity by nonlinear scattering
Abstract: We consider the weak turbulence of whistler waves in the in low-β inner magnetosphere of the earth. Whistler waves, originating in the ionosphere, propagate radially outward and can trigger nonlinear induced scattering by thermal electrons provided the wave energy density is large enough. Nonlinear scattering can substantially change the direction of the wave vector of whistler waves and hence the direction of energy flux with only a small change in the frequency. A portion of whistler waves return to the ionosphere with a smaller perpendicular wave vector resulting in diminished linear damping and enhanced ability to pitch-angle scatter trapped electrons. In addition, a portion of the scatteredwave packets can be reflected near the ionosphere back into the magnetosphere. Through multiple. . .
Date: 01/2012 Publisher: Physics of Plasmas Pages: 032903 DOI: 10.1063/1.3692092 Available at: http://scitation.aip.org/content/aip/journal/pop/19/3/10.1063/1.3692092
More Details
2011
Authors: Ukhorskiy Aleksandr Y., Mauk Barry H., Fox Nicola J., Sibeck David G., and Grebowsky Joseph M.
Title: Radiation belt storm probes: Resolving fundamental physics with practical consequences
Abstract: The fundamental processes that energize, transport, and cause the loss of charged particles operate throughout the universe at locations as diverse as magnetized planets, the solar wind, our Sun, and other stars. The same processes operate within our immediate environment, the Earth's radiation belts. The Radiation Belt Storm Probes (RBSP) mission will provide coordinated two-spacecraft observations to obtain understanding of these fundamental processes controlling the dynamic variability of the near-Earth radiation environment. In this paper we discuss some of the profound mysteries of the radiation belt physics that will be addressed by RBSP and briefly describe the mission and its goals.
Date: 07/2011 Publisher: Journal of Atmospheric and Solar-Terrestrial Physics Pages: 1417 - 1424 DOI: 10.1016/j.jastp.2010.12.005 Available at: http://www.sciencedirect.com/science/article/pii/S1364682610003688
More Details
Authors: Millan R.M.
Title: Understanding relativistic electron losses with BARREL
Abstract: The primary scientific objective of the Balloon Array for RBSP Relativistic Electron Losses (BARREL) is to understand the processes responsible for scattering relativistic electrons into Earth's atmosphere. BARREL is the first Living with a Star Geospace Mission of Opportunity, and will consist of two Antarctic balloon campaigns conducted in the 2012 and 2013 Austral summer seasons. During each campaign, a total of 20 small View the MathML source(∼20kg) balloon payloads will be launched, providing multi-point measurements of electron precipitation in conjunction with in situ measurements from the two RBSP spacecraft, scheduled to launch in May 2012. In this paper we outline the scientific objectives of BARREL, highlighting a few key science questions that will be addressed by BARREL in c. . .
Date: 07/2011 Publisher: Journal of Atmospheric and Solar-Terrestrial Physics Pages: 1425 - 1434 DOI: 10.1016/j.jastp.2011.01.006 Available at: http://www.sciencedirect.com/science/article/pii/S1364682611000071
More Details
2010
Authors: Min Kyungguk, Lee Jeongwoo, and Keika Kunihiro
Title: Chorus wave generation near the dawnside magnetopause due to drift shell splitting of substorm-injected electrons
Abstract: We study the relationship between the electron injection and the chorus waves during a substorm event on 23 March 2007. The chorus waves were detected at high geomagnetic latitude (∼70°S) Antarctic observatories in the range of 0600–0900 h in magnetic local time (MLT). Electrons drifting from the injection event were measured by two LANL spacecraft at 0300 and 0900 MLT. The mapping of auroral brightening areas to the magnetic equator shows that the injection occurred in an MLT range of 2200–2400. This estimate is consistent with observations by the THEMIS A, B, and D spacecraft (which were located at 2100 MLT and did not observe electron injections). Our backward model tracing from the magnetic equator near the dawnside magnetopause (which magnetically connects to the Antar. . .
Date: 10/2010 Publisher: American Geophysical Union DOI: 10.1029/2010JA015474
More Details
2009
Authors: Kemp Brian L, McGee Timothy G, and Shankar Uday J
Title: Analysis of Spinning Spacecraft with Wire Booms Part 1: Derivation of Nonlinear Dynamics
Abstract: Algebraic expressions for the governing equations of motion are developed to describe a spinning spacecraft with flexible appendages. Two limiting cases are investigated: appendages that are self-restoring and appendages that require spacecraft motion to restore. Solar panels have sufficient root stiffness to self-restore perturbations. Radial wire antennae have little intrinsic root stiffness and require centripetal acceleration from spacecraft rotations to restore perturbations. External forces applied for attitude corrections can displace spacecraft appendages from their steady-state position. The Radiation Belt Storm Probe (RBSP) satellite is used as an example to explore numerical results for several maneuvers.
Date: 08/2009 Publisher: AIAA Guidance, Navigation, and Control Conference DOI: 10.2514/6.2009-6202 Available at: http://arc.aiaa.org/doi/pdf/10.2514/6.2009-6202
More Details
Authors: McGee Timothy G, Shankar Uday J, and Kemp Brian L
Title: Analysis of Spinning Spacecraft with Wire Booms Part 2: Out-of-Plane Dynamics and Maneuvers
Abstract: An analysis of the dynamics for a spin stabilized spacecraft consisting of a rigid central hub with four long exible wire booms is presented. The analysis focuses on the dynamics out of the spin plane of the spacecraft. Companion papers will focus on the derivations of the full nonlinear dynamics and analysis of the in plane dynamics. A linear analysis is used to estimate the mode shapes of the free response of the system, the e ects of various damping mechanisms on these modes, and the dynamic response of the system to various maneuvers. The results of an independent simulation of the full nonlinear dynamics of the system are also provided to support the linear analysis. While the dynamics and analysis approach presented can be applied to the general class of spin stabilized space. . .
Date: 08/2009 Publisher: AIAA Guidance, Navigation, and Control Conference DOI: 10.2514/6.2009-6203 Available at: http://arc.aiaa.org/doi/pdf/10.2514/6.2009-6203
More Details
Authors: Shankar Uday J, McGee Timothy G, and Kemp Brian L
Title: Analysis of Spinning Spacecraft with Wire Booms Part 3: Spin-Plane Dynamics, Maneuvers, and Deployment
Abstract: Several science spacecraft use long wire booms as electric-field antennas and the spacecraft spins to maintain the orientation of these flexible wires. These booms account for a majority of the total spacecraft inertia while weighing only a small fraction of the total mass. The spacecraft dynamics is therefore dominated by these booms. The analysis of such spacecraft is further complicated by other flexible ap- pendages and the presence of damping in the system, both inherent in the sys- tem and from damping mechanisms deliberately added into the system. This pa- per and two companion papers analyze such spacecraft. The first of these derives the governing nonlinear equations from first principles. Under certain conditions, the dynamics neatly separate into spin-plane and out-of-p. . .
Date: 08/2009 Publisher: AIAA Guidance, Navigation, and Control Conference DOI: 10.2514/6.2009-6204 Available at: http://arc.aiaa.org/doi/pdf/10.2514/6.2009-6204
More Details
Authors: Ohtani S, Miyoshi Y, Singer H J, and Weygand J M
Title: On the loss of relativistic electrons at geosynchronous altitude: Its dependence on magnetic configurations and external conditions
Abstract: [1] The present study statistically examines geosynchronous magnetic configurations and external conditions that characterize the loss of geosynchronous MeV electrons. The loss of MeV electrons often takes place during magnetospheric storms, but it also takes place without any clear storm activity. It is found that irrespective of storm activity, the day-night asymmetry of the geosynchronous H (north-south) magnetic component is pronounced during electron loss events. For the loss process, the magnitude, rather than the duration, of the magnetic distortion appears to be important, and its effective duration can be as short as ∼30 min. The solar wind dynamic pressure tends to be high and interplanetary magnetic field BZ tends to be southward during electron loss events. Under such externa. . .
Date: 01/2009 Publisher: Journal of Geophysical Research DOI: 10.1029/2008JA013391 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2008JA013391/full
More Details
2008
Authors: KRESS B, Hudson M K, LOOPER M, LYON J, and GOODRICH C
Title: Global MHD test particle simulations of solar energetic electron trapping in the Earth’s radiation belts
Abstract: Test-particle trajectories are computed in fields from a global MHD magnetospheric model simulation of the 29 October 2003 Storm Commencement to investigate trapping and transport of solar energetic electrons (SEEs) in the magnetosphere during severe storms. SEEs are found to provide a source population for a newly formed belt of View the MathML source electrons in the Earth's inner zone radiation belts, which was observed following the 29 October 2003 storm. Energy and pitch angle distributions of the new belt are compared with results previously obtained [Kress, B.T., Hudson, M.K., Looper, M.D., Albert, J., Lyon, J.G., Goodrich, C.C., 2007. Global MHD test particle simulations of >10 MeV radiation belt electrons during storm sudden commencement. Journal of Geophysical Research 112, A0921. . .
Date: 11/2008 Publisher: Journal of Atmospheric and Solar-Terrestrial Physics Pages: 1727 - 1737 DOI: 10.1016/j.jastp.2008.05.018 Available at: http://www.sciencedirect.com/science/article/pii/S1364682608001338
More Details
Authors: UKHORSKIY A, and SITNOV M
Title: Radial transport in the outer radiation belt due to global magnetospheric compressions
Abstract: Earth's outer radiation belt is populated by relativistic electrons that produce a complex dynamical response to varying geomagnetic activity. One fundamental process defining global state of the belt is radial transport of electrons across their drift shells. Radial transport is induced by resonant interaction of electron drift motion with ULF oscillations of electric and magnetic fields and is commonly believed to be a diffusive process. The goal of this paper is the analysis of radial transport due to typical ULF fluctuations in the inner magnetospheric fields. For this purpose a test-particle approach is used in the guiding center approximation. In particular we consider ULF oscillations due to global magnetospheric compressions. It is shown that typical pressure variations induce larg. . .
Date: 11/2008 Publisher: Journal of Atmospheric and Solar-Terrestrial Physics Pages: 1714 - 1726 DOI: 10.1016/j.jastp.2008.07.018 Available at: http://www.sciencedirect.com/science/article/pii/S1364682608001971
More Details
Authors: SHPRITS Y, ELKINGTON S, MEREDITH N, and SUBBOTIN D
Title: Review of modeling of losses and sources of relativistic electrons in the outer radiation belt I: Radial transport
Abstract: In this paper, we focus on the modeling of radial transport in the Earth's outer radiation belt. A historical overview of the first observations of the radiation belts is presented, followed by a brief description of radial diffusion. We describe how resonant interactions with poloidal and toroidal components of the ULF waves can change the electron's energy and provide radial displacements. We also present radial diffusion and guiding center simulations that show the importance of radial transport in redistributing relativistic electron fluxes and also in accelerating and decelerating radiation belt electrons. We conclude by presenting guiding center simulations of the coupled particle tracing and magnetohydrodynamic (MHD) codes and by discussing the origin of relativistic electrons at ge. . .
Date: 11/2008 Publisher: Journal of Atmospheric and Solar-Terrestrial Physics Pages: 1679 - 1693 DOI: 10.1016/j.jastp.2008.06.008 Available at: http://www.sciencedirect.com/science/article/pii/S1364682608001648
More Details
Authors: SHPRITS Y, SUBBOTIN D, MEREDITH N, and ELKINGTON S
Title: Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss
Abstract: This paper focuses on the modeling of local acceleration and loss processes in the outer radiation belt. We begin by reviewing the statistical properties of waves that violate the first and second adiabatic invariants, leading to the loss and acceleration of high energy electrons in the outer radiation belt. After a brief description of the most commonly accepted methodology for computing quasi-linear diffusion coefficients, we present pitch-angle scattering simulations by (i) plasmaspheric hiss, (ii) a combination of plasmaspheric hiss and electromagnetic ion cyclotron (EMIC) waves, (iii) chorus waves, and (iv) a combination of chorus and EMIC waves. Simulations of the local acceleration and loss processes show that statistically, the net effect of chorus waves is acceleration at MeV ener. . .
Date: 11/2008 Publisher: Journal of Atmospheric and Solar-Terrestrial Physics Pages: 1694 - 1713 DOI: 10.1016/j.jastp.2008.06.014 Available at: http://www.sciencedirect.com/science/article/pii/S1364682608001673
More Details
Authors: Degeling A W, and Rankin R
Title: Resonant drift echoes in electron phase space density produced by dayside Pc5 waves following a geomagnetic storm
Abstract: [1] The interaction between relativistic, equatorially mirroring electrons and Pc5 Ultra Low Frequency (ULF) waves in the magnetosphere is investigated using a numerical MagnetoHydroDynamic (MHD) model for waves and a test-kinetic model for electron phase space density (PSD). The temporal and spatial characteristics of a ULF wave packet are constrained using ground-based observations of narrowband ULF activity following a geomagnetic storm on 24 March 1991, which occurred from 1200 to 1340 Universal Time (UT). A salient feature of the ULF waves during this interval was the apparent localization of the ULF wave power to the dayside of the magnetosphere and the antisunward propagation of ULF wave phase in the morning and afternoon sectors. This is interpreted to imply a localized source of U. . .
Date: 10/2008 Publisher: Journal of Geophysical Research DOI: 10.1029/2008JA013254 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2008JA013254/abstract
More Details
Authors: Jordanova V K, Albert J, and Miyoshi Y
Title: Relativistic electron precipitation by EMIC waves from self-consistent global simulations
Abstract: [1] We study the effect of electromagnetic ion cyclotron (EMIC) wave scattering on radiation belt electrons during the large geomagnetic storm of 21 October 2001 with minimum Dst = −187 nT. We use our global physics-based model, which solves the kinetic equation for relativistic electrons and H+, O+, and He+ ions as a function of radial distance in the equatorial plane, magnetic local time, energy, and pitch angle. The model includes time-dependent convective transport and radial diffusion and all major loss processes and is coupled with a dynamic plasmasphere model. We calculate the excitation of EMIC waves self-consistently with the evolving plasma populations. Particle interactions with these waves are evaluated according to quasi-linear theory, using diffusion coefficients for a mult. . .
Date: 03/2008 Publisher: Journal of Geophysical Research DOI: 10.1029/2008JA013239 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2008JA013239/abstract
More Details
2007
Authors: Reeves Geoffrey D
Title: Radiation Belt Storm Probes: The Next Generation of Space Weather Forecasting
Abstract: N/A
Date: 11/2007 Publisher: Space Weather DOI: 10.1029/2007SW000341 Available at: http://www.agu.org/pubs/crossref/2007/2007SW000341.shtml
More Details
Authors: Li W, Shprits Y Y, and Thorne R M
Title: Dynamic evolution of energetic outer zone electrons due to wave-particle interactions during storms
Abstract: [1] Relativistic electrons in the outer radiation belt are subjected to pitch angle and energy diffusion by chorus, electromagnetic ion cyclotron (EMIC), and hiss waves. Using quasi-linear diffusion coefficients for cyclotron resonance with field-aligned waves, we examine whether the resonant interactions with chorus waves produce a net acceleration or loss of relativistic electrons. We also examine the effect of pitch angle scattering by EMIC and hiss waves during the main and recovery phases of a storm. The numerical simulations show that wave-particle interactions with whistler mode chorus waves with realistic wave spectral properties result in a net acceleration of relativistic electrons, while EMIC waves, which provide very fast scattering near the edge of the loss cone, may be a domi. . .
Date: 10/2007 Publisher: Journal of Geophysical Research DOI: 10.1029/2007JA012368 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2007JA012368/full
More Details
Authors: Chen Yue, Reeves Geoffrey D, and Friedel Reiner H W
Title: The energization of relativistic electrons in the outer Van Allen radiation belt
Abstract: The origin and dynamics of the Van Allen radiation belts is one of the longest-standing questions of the space age, and one that is increasingly important for space applications as satellite systems become more sophisticated, smaller and more susceptible to radiation effects. The precise mechanism by which the Earth's magnetosphere is able to accelerate electrons from thermal to ultrarelativistic energies (Edouble greater than0.5 MeV) has been particularly difficult to definitively resolve. The traditional explanation is that large-scale, fluctuating electric and magnetic fields energize particles through radial diffusion1. More recent theories2, 3 and observations4, 5 have suggested that gyro-resonant wave–particle interactions may be comparable to or more important than radial diffusio. . .
Date: 09/2007 Publisher: Nature Physics Pages: 614 - 617 DOI: 10.1038/nphys655 Available at: http://www.nature.com/nphys/journal/v3/n9/full/nphys655.html
More Details
Authors: Kress B T, Hudson M K, Looper M D, Albert J, Lyon J G, et al.
Title: Global MHD test particle simulations of >10 MeV radiation belt electrons during storm sudden commencement
Abstract: [1] Prior to 2003, there are two known cases where ultrarelativistic (≳10 MeV) electrons appeared in the Earth's inner zone radiation belts in association with high speed interplanetary shocks: the 24 March 1991 and the less well studied 21 February 1994 storms. During the March 1991 event electrons were injected well into the inner zone on a timescale of minutes, producing a new stably trapped radiation belt population that persisted for ∼10 years. More recently, at the end of solar cycle 23, a number of violent geomagnetic disturbances resulted in large variations in ultrarelativistic electrons in the inner zone, indicating that these events are less rare than previously thought. Here we present results from a numerical study of shock-induced transport and energization of outer zone . . .
Date: 09/2007 Publisher: Journal of Geophysical Research DOI: 10.1029/2006JA012218 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2006JA012218/abstract
More Details
Authors: Meredith Nigel P, Horne Richard B, Glauert Sarah A, and Anderson Roger R
Title: Slot region electron loss timescales due to plasmaspheric hiss and lightning-generated whistlers
Abstract: [1] Energetic electrons (E > 100 keV) in the Earth's radiation belts undergo Doppler-shifted cyclotron resonant interactions with a variety of whistler mode waves leading to pitch angle scattering and subsequent loss to the atmosphere. In this study we assess the relative importance of plasmaspheric hiss and lightning-generated whistlers in the slot region and beyond. Electron loss timescales are determined using the Pitch Angle and energy Diffusion of Ions and Electrons (PADIE) code with global models of the spectral distributions of the wave power based on CRRES observations. Our results show that plasmaspheric hiss propagating at small and intermediate wave normal angles is a significant scattering agent in the slot region and beyond. In contrast, plasmaspheric hiss propagating at large. . .
Date: 08/2007 Publisher: Journal of Geophysical Research DOI: 10.1029/2007JA012413 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2007JA012413/abstract
More Details
Authors: Thorne R M, Shprits Y Y, Meredith N P, Horne R B, Li W, et al.
Title: Refilling of the slot region between the inner and outer electron radiation belts during geomagnetic storms
Abstract: [1] Energetic electrons (≥50 keV) are injected into the slot region (2 < L < 4) between the inner and outer radiation belts during the early recovery phase of geomagnetic storms. Enhanced convection from the plasma sheet can account for the storm-time injection at lower energies but does not explain the rapid appearance of higher-energy electrons (≥150 keV). The effectiveness of either radial diffusion (driven by enhanced ULF waves) or local acceleration (during interactions with enhanced whistler mode chorus emissions), as a potential source for refilling the slot at higher energies, is analyzed for observed conditions during the early recovery phase of the 10 October 1990 storm. We demonstrate that local acceleration, driven by observed chorus emissions, can account for the rapid enh. . .
Date: 06/2007 Publisher: Journal of Geophysical Research DOI: 10.1029/2006JA012176 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2006JA012176/abstract
More Details
Authors: Degeling A W, Rankin R, Kabin K, Marchand R, and Mann I R
Title: The effect of ULF compressional modes and field line resonances on relativistic electron dynamics
Abstract: The adiabatic, drift-resonant interaction between relativistic, equatorially mirroring electrons and a ULF compressional wave that couples to a field line resonance (FLR) is modelled. Investigations are focussed on the effect of azimuthal localisation in wave amplitude on the electron dynamics. The ULF wave fields on the equatorial plane (r , φ ) are modelled using a box model [Zhu, X., Kivelson, M.G., 1988. Analytic formulation and quantitative solutions of the coupled ULF wave problem. J. Geophys. Res. 93(A8), 8602–8612], and azimuthal variations are introduced by adding a discrete spectrum of azimuthal modes. Electron trajectories are calculated using drift equations assuming constant magnetic moment M , and the evolution of the distribution function f(r,φ,M,t) from an assumed in. . .
Date: 04/2007 Publisher: Planetary and Space Science Pages: 731 - 742 DOI: 10.1016/j.pss.2006.04.039 Available at: http://www.sciencedirect.com/science/article/pii/S0032063306002893
More Details
Authors: Summers D., Ni Binbin, and Meredith Nigel P
Title: Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 1. Theory
Abstract: Radiation belt electrons can interact with various modes of plasma wave in their drift orbits about the Earth, including whistler-mode chorus outside the plasmasphere, and both whistler-mode hiss and electromagnetic ion cyclotron waves inside the plasmasphere. Electrons undergo gyroresonant diffusion in their interactions with these waves. To determine the timescales for electron momentum diffusion and pitch angle diffusion, we develop bounce-averaged quasi-linear resonant diffusion coefficients for field-aligned electromagnetic waves in a hydrogen or multi-ion (H+, He+, O+) plasma. We assume that the Earth's magnetic field is dipolar and that the wave frequency spectrum is Gaussian. Evaluation of the diffusion coefficients requires the solution of a sixth-order polynomial equation for the. . .
Date: 04/2007 Publisher: Journal of Geophysical Research DOI: 10.1029/2006JA011801 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2006JA011801/abstract
More Details
Authors: MILLAN R, and THORNE R
Title: Review of radiation belt relativistic electron losses
Abstract: We present a brief review of radiation belt electron losses which are vitally important for controlling the dynamics of the radiation belts. A historical overview of early observations is presented, followed by a brief description of important known electron loss mechanisms. We describe key theoretical results and observations related to pitch-angle scattering by resonant interaction with plasmaspheric hiss, whistler-mode chorus and electromagnetic ion cyclotron waves, and review recent work on magnetopause losses. In particular, we attempt to organize recent observational data by loss mechanism and their relative importance to the overall rate of loss. We conclude by suggesting future observational and theoretical work that would contribute to our understanding of this important area of r. . .
Date: 03/2007 Publisher: Journal of Atmospheric and Solar-Terrestrial Physics Pages: 362 - 377 DOI: 10.1016/j.jastp.2006.06.019 Available at: http://www.sciencedirect.com/science/article/pii/S1364682606002768
More Details
2006
Authors: Bortnik J, Thorne R M, O’Brien T P, Green J C, Strangeway R J, et al.
Title: Observation of two distinct, rapid loss mechanisms during the 20 November 2003 radiation belt dropout event
Abstract: The relativistic electron dropout event on 20 November 2003 is studied using data from a number of satellites including SAMPEX, HEO, ACE, POES, and FAST. The observations suggest that the dropout may have been caused by two separate mechanisms that operate at high and low L-shells, respectively, with a separation at L ∼ 5. At high L-shells (L > 5), the dropout is approximately independent of energy and consistent with losses to the magnetopause aided by the Dst effect and outward radial diffusion which can deplete relativistic electrons down to lower L-shells. At low L-shells (L < 5), the dropout is strongly energy-dependent, with the higher-energy electrons being affected most. Moreover, large precipitation bands of both relativistic electrons and energetic protons are observed at low L. . .
Date: 12/2006 Publisher: Journal of Geophysical Research DOI: 10.1029/2006JA011802 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2006JA011802/abstract
More Details

Pages