Biblio

Found 643 results
Filters: Keyword is Van Allen Probes  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Van Allen Probes
Authors: Zhu Hui, Chen Lunjin, Liu Xu, and Shprits Yuri Y
Title: Modulation of Locally Generated Equatorial Noise by ULF Wave
Abstract: In this paper we report a rare and fortunate event of fast magnetosonic (MS, also called equatorial noise) waves modulated by compressional ultralow frequency (ULF) waves measured by Van Allen Probes. The characteristics of MS waves, ULF waves, proton distribution, and their potential correlations are analyzed. The results show that ULF waves can modulate the energetic ring proton distribution and in turn modulate the MS generation. Furthermore, the variation of MS intensities is attributed to not only ULF wave activities but also the variation of background parameters, for example, number density. The results confirm the opinion that MS waves are generated by proton ring distribution and propose a new modulation phenomenon.
Date: 04/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026199 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026199
More Details
Authors: Yoon Peter H., Hwang Junga, Kim Hyangpyo, and Seough Jungjoon
Title: Quasi Thermal Noise Spectroscopy for Van Allen Probes
Abstract: Quasi thermal fluctuations in the Langmuir/upper‐hybrid frequency range are pervasively observed in space plasmas including the radiation belt and the ring current region of inner magnetosphere as well as the solar wind. The quasi thermal noise spectroscopy may be employed in order to determine the electron density and temperature as well as to diagnose the properties of energetic electrons when direct measurements are not available. However, when employing the technique, one must carefully take the spacecraft orientation into account. The present paper takes the upper‐hybrid and multiple harmonic—or (n + 1/2)fce—emissions measured by the Van Allen Probes as an example in order to illustrate how the spacecraft antenna geometrical factor can be incorporated into the theoretical . . .
Date: 04/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026460 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026460
More Details
Authors: Qin Murong, Hudson Mary, Kress Brian, Selesnick Richard, Engel Miles, et al.
Title: Investigation of Solar Proton Access into the inner magnetosphere on 11 September 2017
Abstract: In this study, access of solar energetic protons to the inner magnetosphere on 11 September 2017 is investigated by computing the reverse particle trajectories with the Dartmouth geomagnetic cutoff code [Kress et al., 2010]. The maximum and minimum cutoff rigidity at each point along the orbit of Van Allen Probe A is numerically computed by extending the code to calculate cutoff rigidity for particles coming from arbitrary direction. Pulse‐height analyzed (PHA) data has the advantage of providing individual particle energies and effectively excluding background high energy proton contamination. This technique is adopted to study the cutoff locations for solar protons with different energy. The results demonstrate that cutoff latitude is lower for solar protons with higher energy, consist. . .
Date: 04/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026380 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026380
More Details
Authors: Chen Yaru, Zhou Qinghua, He Yihua, Yang Chang, Liu Si, et al.
Title: Global occurrences of electrostatic electron cyclotron harmonic waves associated with radiation belt electron distributions
Abstract: Electrostatic electron cyclotron harmonic (ECH) waves can yield diffuse aurora primarily at higher L‐shells by driving efficient precipitation loss of plasma sheet electrons. Here using the Van Allen Probes high resolution data, we examine in detail the global occurrences of ECH waves during the period from October 1, 2012 to June 30, 2017 and find that there are totally 419 events of enhanced ECH waves. The statistical results demonstrate that ECH waves can be present over a broad region of L=4‐6 and 00‐24 MLT, with a higher occurrence in the region of L=5‐6 and 06‐19 MLT. The electron phase space density exhibits a distinct ring distribution (∂f/∂v⊥ >0) with the peak energy around a few keV. Both ECH wave events and the electron ring distributions are closely related and . . .
Date: 04/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL082668 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082668
More Details
Authors: Miyoshi Y, Matsuda S., Kurita S., Nomura K., Keika K, et al.
Title: EMIC waves converted from equatorial noise due to M/Q=2 ions in the plasmasphere: Observations from Van Allen Probes and Arase
Abstract: Equatorial noise (EN) emissions are observed inside and outside the plasmapause. EN emissions are referred to as magnetosonic mode waves. Using data from Van Allen Probes and Arase, we found conversion from EN emissions to electromagnetic ion cyclotron (EMIC) waves in the plasmasphere and in the topside ionosphere. A low frequency part of EN emissions becomes EMIC waves through branch splitting of EN emissions, and the mode conversion from EN to EMIC waves occurs around the frequency of M/Q=2 (deuteron and/or alpha particles) cyclotron frequency. These processes result in plasmaspheric EMIC waves. We investigated the ion composition ratio by characteristic frequencies of EN emissions and EMIC waves and obtained ion composition ratios. We found that the maximum composition ratio of M/Q=2 io. . .
Date: 04/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083024 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083024
More Details
Authors: Ripoll J.‐F., Farges T., Lay E. H., and Cunningham G. S.
Title: Local and Statistical Maps of Lightning‐Generated Wave Power Density Estimated at the Van Allen Probes Footprints From the World‐Wide Lightning Location Network Database
Abstract: We propose a new method that uses the World‐Wide Lightning Location Network (WWLLN) to estimate both the local and the drift lightning power density at the Van Allen Probes footprints during 4.3 years (~2 × 108 strokes.). The ratio of the drift power density to the local power density defines a time‐resolved WWLLN‐based model of lightning‐generated wave (LGW) power density ratio, RWWLLN. RWWLLNis computed every ~34 s. This ratio multiplied by the time‐resolved LGW intensity measured by the Probes allows direct computation of pitch angle diffusion coefficients used in radiation belt codes. Statistical analysis shows the median power density ratio is urn:x-wiley:00948276:media:grl58808:grl58808-math-0001 over the Americas. Elsewhere, urn:x-wiley:00948276:media:grl58808:grl58808-ma. . .
Date: 03/2019 Publisher: Geophysical Research Letters Pages: 4122 - 4133 DOI: 10.1029/2018GL081146 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL081146
More Details
Authors: Wang Zihan, Zou Shasha, Shepherd Simon G., Liang Jun, Gjerloev Jesper W., et al.
Title: Multi‐instrument Observations of Mesoscale Enhancement of Subauroral Polarization Stream Associated With an Injection
Abstract: Subauroral polarization streams (SAPS) prefer geomagnetically disturbed conditions and strongly correlate with geomagnetic indexes. However, the temporal evolution of SAPS and its relationship with dynamic and structured ring current and particle injection are still not well understood. In this study, we performed detailed analysis of temporal evolution of SAPS during a moderate storm on 18 May 2013 using conjugate observations of SAPS from the Van Allen Probes (VAP) and the Super Dual Auroral Radar Network (SuperDARN). The large‐scale SAPS (LS‐SAPS) formed during the main phase of this storm and decayed due to the northward turning of the interplanetary magnetic field. A mesoscale (approximately several hundreds of kilometers zonally) enhancement of SAPS was observed by SuperDARN at 0. . .
Date: 03/2019 Publisher: Journal of Geophysical Research: Space Physics Pages: 1770 - 1784 DOI: 10.1029/2019JA026535 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026535
More Details
Authors: Zhao H., Baker D N, Li X, Jaynes A. N., and Kanekal S G
Title: The Effects of Geomagnetic Storms and Solar Wind Conditions on the Ultrarelativistic Electron Flux Enhancements
Abstract: Using data from the Relativistic Electron Proton Telescope on the Van Allen Probes, the effects of geomagnetic storms and solar wind conditions on the ultrarelativistic electron (E > ~3 MeV) flux enhancements in the outer radiation belt, especially regarding their energy dependence, are investigated. It is showed that, statistically, more intense geomagnetic storms are indeed more likely to cause flux enhancements of ~1.8‐ to 7.7‐MeV electrons, though large variations exist. As the electron energy gets higher, the probability of flux enhancement gets lower. To shed light on which conditions of the storms are preferred to cause ultrarelativistic electron flux enhancement, detailed superposed epoch analyses of solar wind parameters and geomagnetic indices during moderate and intense stor. . .
Date: 03/2019 Publisher: Journal of Geophysical Research: Space Physics Pages: 1948 - 1965 DOI: 10.1029/2018JA026257 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026257
More Details
Authors: Kim Kyung‐Chan, and Shprits Yuri
Title: Statistical Analysis of Hiss Waves in Plasmaspheric Plumes Using Van Allen Probe Observations
Abstract: Plasmaspheric hiss waves commonly observed in high‐density regions in the Earth's magnetosphere are known to be one of the main contributors to the loss of radiation belt electrons. There has been a lot of effort to investigate the distributions of hiss waves in the plasmasphere, while relatively little attention has been given to those in the plasmaspheric plume. In this study, we present for the first time a statistical analysis of the occurrence and the spatial distribution of wave amplitudes and wave normal angles for hiss waves in plumes using Van Allen Probes observations during the period of October 2012 to December 2016. Statistical results show that a wide range of hiss wave amplitudes in plumes from a few picotesla to >100 pT is observed, but a modest (<20 pT) wave amplitude is. . .
Date: 03/2019 Publisher: Journal of Geophysical Research: Space Physics Pages: 1904 - 1915 DOI: 10.1029/2018JA026458 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026458
More Details
Authors: Capannolo L., Li W, Ma Q, Shen X.‐C., Zhang X.‐J., et al.
Title: Energetic Electron Precipitation: Multievent Analysis of Its Spatial Extent During EMIC Wave Activity
Abstract: Electromagnetic ion cyclotron (EMIC) waves can drive precipitation of tens of keV protons and relativistic electrons, and are a potential candidate for causing radiation belt flux dropouts. In this study, we quantitatively analyze three cases of EMIC‐driven precipitation, which occurred near the dusk sector observed by multiple Low‐Earth‐Orbiting (LEO) Polar Operational Environmental Satellites/Meteorological Operational satellite programme (POES/MetOp) satellites. During EMIC wave activity, the proton precipitation occurred from few tens of keV up to hundreds of keV, while the electron precipitation was mainly at relativistic energies. We compare observations of electron precipitation with calculations using quasi‐linear theory. For all cases, we consider the effects of other magn. . .
Date: 03/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026291 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026291
More Details
Authors: Li W, Shen X.‐C., Ma Q, Capannolo L., Shi R., et al.
Title: Quantification of Energetic Electron Precipitation Driven by Plume Whistler Mode Waves, Plasmaspheric Hiss, and Exohiss
Abstract: Whistler mode waves are important for precipitating energetic electrons into Earth's upper atmosphere, while the quantitative effect of each type of whistler mode wave on electron precipitation is not well understood. In this letter, we evaluate energetic electron precipitation driven by three types of whistler mode waves: plume whistler mode waves, plasmaspheric hiss, and exohiss observed outside the plasmapause. By quantitatively analyzing three conjunction events between Van Allen Probes and POES/MetOp satellites, together with quasi‐linear calculation, we found that plume whistler mode waves are most effective in pitch angle scattering loss, particularly for the electrons from tens to hundreds of keV. Our new finding provides the first direct evidence of effective pitch angle scatter. . .
Date: 03/2019 Publisher: Geophysical Research Letters Pages: 3615 - 3624 DOI: 10.1029/2019GL082095 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082095
More Details
Authors: Kilpua E. K. J., Turner D. L., Jaynes A. N., Hietala H., Koskinen H. E. J., et al.
Title: Outer Van Allen Radiation Belt Response to Interacting Interplanetary Coronal Mass Ejections
Abstract: We study the response of the outer Van Allen radiation belt during an intense magnetic storm on 15–22 February 2014. Four interplanetary coronal mass ejections (ICMEs) arrived at Earth, of which the three last ones were interacting. Using data from the Van Allen Probes, we report the first detailed investigation of electron fluxes from source (tens of kiloelectron volts) to core (megaelectron volts) energies and possible loss and acceleration mechanisms as a response to substructures (shock, sheath and ejecta, and regions of shock‐compressed ejecta) in multiple interacting ICMEs. After an initial enhancement induced by a shock compression of the magnetosphere, core fluxes strongly depleted and stayed low for 4 days. This sustained depletion can be related to a sequence of ICME substruc. . .
Date: 03/2019 Publisher: Journal of Geophysical Research: Space Physics Pages: 1927 - 1947 DOI: 10.1029/2018JA026238 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026238
More Details
Authors: Baker Daniel N, Hoxie Vaughn, Zhao Hong, Jaynes Allison N., Kanekal Shri, et al.
Title: Multiyear Measurements of Radiation Belt Electrons: Acceleration, Transport, and Loss
Abstract: In addition to clarifying morphological structures of the Earth's radiation belts, it has also been a major achievement of the Van Allen Probes mission to understand more thoroughly how highly relativistic and ultrarelativistic electrons are accelerated deep inside the radiation belts. Prior studies have demonstrated that electrons up to energies of 10 megaelectron volts (MeV) can be produced over broad regions of the outer Van Allen zone on timescales of minutes to a few hours. It often is seen that geomagnetic activity driven by strong solar storms (i.e., coronal mass ejections, or CMEs) almost inexorably leads to relativistic electron production through the intermediary step of intense magnetospheric substorms. In this study, we report observations over the 6‐year period 1 September 2. . .
Date: 03/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026259 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026259
More Details
Authors: Blum L.W., Artemyev A., Agapitov O., Mourenas D., Boardsen S., et al.
Title: EMIC Wave‐Driven Bounce Resonance Scattering of Energetic Electrons in the Inner Magnetosphere
Abstract: While electromagnetic ion cyclotron (EMIC) waves have been long studied as a scattering mechanism for ultrarelativistic (megaelectron volt) electrons via cyclotron‐resonant interactions, these waves are also of the right frequency to resonate with the bounce motion of lower‐energy (approximately tens to hundreds of kiloelectron volts) electrons. Here we investigate the effectiveness of this bounce resonance interaction to better determine the effects of EMIC waves on subrelativistic electron populations in Earth's inner magnetosphere. Using wave and plasma parameters directly measured by the Van Allen Probes, we estimate bounce resonance diffusion coefficients for four different events, illustrative of wave and plasma parameters to be encountered in the inner magnetosphere. The range o. . .
Date: 03/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026427 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026427
More Details
Authors: Teng S., Tao X., and Li W
Title: Typical Characteristics of Whistler Mode Waves Categorized by Their Spectral Properties Using Van Allen Probes Observations
Abstract: Properties of banded, no‐gap, lower band only, and upper band only whistler mode waves (0.1–0.8fce) outside the plasmasphere are investigated using Van Allen Probes data. Our analysis shows that no‐gap whistler waves have higher occurrence rate at morning side and dayside, while banded and lower band only waves have higher occurrence rate between midnight and dawn. We also find that the occurrence rate of no‐gap whistler waves peaks at magnetic latitude |MLAT|∼8–10°, while banded waves have higher occurrence rate near the equator for urn:x-wiley:grl:media:grl58818:grl58818-math-0001°. The wave normal angle distributions of these four groups of waves are similar to previous results. The distinct local time and latitudinal distribution of no‐gap and banded whistler mode waves. . .
Date: 03/2019 Publisher: Geophysical Research Letters Pages: 3607 - 3614 DOI: 10.1029/2019GL082161 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082161
More Details
Authors: Lanzerotti Louis J.
Title: Space Research and Space Weather: Some Personal Vignettes 1965 to Early 1980s
Abstract: Personal vignettes are given on early days of space research, space weather, and space advisory activities from 1965 to early 1980s.
Date: 04/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026763 Available at: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JA026763
More Details
Authors: Aseev N. A., and Shprits Y Y
Title: Reanalysis of Ring Current Electron Phase Space Densities Using Van Allen Probe Observations, Convection Model, and Log‐Normal Kalman Filter
Abstract: Models of ring current electron dynamics unavoidably contain uncertainties in boundary conditions, electric and magnetic fields, electron scattering rates, and plasmapause location. Model errors can accumulate with time and result in significant deviations of model predictions from observations. Data assimilation offers useful tools which can combine physics‐based models and measurements to improve model predictions. In this study, we systematically analyze performance of the Kalman filter applied to a log‐transformed convection model of ring current electrons and Van Allen Probe data. We consider long‐term dynamics of μ = 2.3 MeV/G and K = 0.3 G1/2RE electrons from 1 February 2013 to 16 June 2013. By using synthetic data, we show that the Kalman filter is capable of correcting . . .
Date: 04/2019 Publisher: Space Weather Pages: 619 - 638 DOI: 10.1029/2018SW002110 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018SW002110
More Details
Authors: Mager Olga V., Chelpanov Maksim A., Mager Pavel N., Klimushkin Dmitri Yu., and Berngardt Oleg I.
Title: Conjugate Ionosphere‐Magnetosphere Observations of a Sub‐Alfvénic Compressional Intermediate‐ m Wave: A Case Study Using EKB Radar and Van Allen Probes
Abstract: A Pc5 wave was simultaneously observed in the ionosphere by EKB radar and in the magnetosphere by both Van Allen Probe spacecraft within a substorm activity. The wave was located in the nightside, in 1.5‐ to 3‐hr magnetic local time sector, and in the region corresponding to the magnetic shells with maximal distances 4.6–7.8 Earth's radii. As it was found using both the radar and spacecraft data, the wave had frequency of about 1.8 mHz and azimuthal wave number m≈−10; that is, the wave was westward propagating. The EKB radar data revealed the equatorward wave propagating in the ionosphere, which corresponded to the earthward propagation in the magnetosphere. Furthermore, the field‐aligned magnetic component was approximately 2 times larger than both transverse components and ac. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026541 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026541
More Details
Authors: Zhu Hui, Liu Xu, and Chen Lunjin
Title: Triggered Plasmaspheric Hiss: Rising Tone Structures
Abstract: In this study, a rare hiss event observed by Van Allen Probe is reported and the possible generation is investigated based on wave and plasma measurements. The results suggest that the normal hiss (from 0.05fce to 0.5fce) with dominantly equatorward Poynting fluxes is locally generated by plasma sheet electrons via cyclotron instability. The low‐frequency band (from 30 Hz to 0.05fce) with a mixture of equatorward and poleward Poynting fluxes is probably due to multiple reflections inside the plasmasphere. Such difference in the two bands is confirmed by the calculation of minimum energy of resonant electrons and local growth rate. Moreover, the analysis on the fine structures of normal hiss waves shows that besides the expected incoherent structure (below 1 kHz), several rising tone elem. . .
Date: 05/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL082688 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082688
More Details
Authors: Yu J., Li L. Y., Cui J., Cao J. B., and Wang J.
Title: Effect of Low‐Harmonic Magnetosonic Waves on the Radiation Belt Electrons Inside the Plasmasphere
Abstract: In this paper, we presented two observational cases and simulations to indicate the relationship between the formation of butterfly‐like electron pitch angle distributions and the emission of low‐harmonic (LH) fast magnetosonic (MS) waves inside the high‐density plasmasphere. In the wave emission region, the pitch angle of relativistic (>1 MeV) electrons becomes obvious butterfly‐like distributions for both events (near‐equatorially mirroring electrons are transported to lower pitch angles). Unlike relativistic (>1 MeV) electrons, energetic electrons (<1 MeV) change slightly, except that relatively low‐energy electrons (<~150 keV) show butterfly‐like distributions in the 21 August 2013 event. In theory, the LH MS waves can affect different‐energy electrons through the bounc. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026328 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026328
More Details
Authors: Yuan Zhigang, Yao Fei, Yu Xiongdong, Huang Shiyong, and Ouyang Zhihai
Title: An Automatic Detection Algorithm Applied to Fast Magnetosonic Waves With Observations of the Van Allen Probes
Abstract: Fast magnetosonic (MS) waves can play an important role in the evolution of the inner magnetosphere. However, there is still not an effective method to quantitatively identify such waves for observations of the Van Allen Probes reasonably. In this paper, we used Van Allen Probes data from 18 September 2012 to 30 September 2014 to find a more comprehensive automatic detection algorithm for fast MS waves through statistical analysis of the major properties, including the planarity, ellipticity, and wave normal angle of whole fluctuations using the singular value decomposition method. According to a control variate method, we find an obvious difference between fast MS waves and other waves in the statistical distribution of their major properties. After eliminating the influence of background. . .
Date: Apr-05-2021 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026387 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026387
More Details
Authors: Juhász Lilla, Omura Yoshiharu, Lichtenberger János, and Friedel Reinhard H.
Title: Evaluation of Plasma Properties From Chorus Waves Observed at the Generation Region
Abstract: In this study we present an inversion method which provides thermal plasma population parameters from characteristics of chorus emissions only. Our ultimate goal is to apply this method to ground‐based data in order to derive the lower‐energy boundary condition for many radiation belt models. The first step is to test the chorus inversion method on in situ data of the Van Allen Probes in the generation region. The density and thermal velocity of energetic electrons (few kiloelectron volts to 100 keV) are derived from frequency sweep rate and starting frequencies of chorus emissions through analysis of wave data from the Electric and Magnetic Field Instrument Suite and Integrated Science on board the Van Allen Probes. The nonlinear wave growth theory of Omura and Nunn (2011, https://doi. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026337 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026337
More Details
Authors: Qin Murong, Hudson Mary, Li Zhao, Millan Robyn, Shen Xiaochen, et al.
Title: Investigating Loss of Relativistic Electrons Associated With EMIC Waves at Low L Values on 22 June 2015
Abstract: In this study, rapid loss of relativistic radiation belt electrons at low L* values (2.4–3.2) during a strong geomagnetic storm on 22 June 2015 is investigated along with five possible loss mechanisms. Both the particle and wave data are obtained from the Van Allen Probes. Duskside H+ band electromagnetic ion cyclotron (EMIC) waves were observed during a rapid decrease of relativistic electrons with energy above 5.2 MeV occurring outside the plasmasphere during extreme magnetopause compression. Lower He+ composition and enriched O+ composition are found compared to typical values assumed in other studies of cyclotron resonant scattering of relativistic electrons by EMIC waves. Quantitative analysis demonstrates that even with the existence of He+ band EMIC waves, it is the H+ band EMIC w. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025726 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025726
More Details
Authors: Zhang Wenxun, Ni Binbin, Huang He, Summers Danny, Fu Song, et al.
Title: Statistical Properties of Hiss in Plasmaspheric Plumes and Associated Scattering Losses of Radiation Belt Electrons
Abstract: Whistler mode hiss acts as an important loss mechanism contributing to the radiation belt electron dynamics inside the plasmasphere and plasmaspheric plumes. Based on Van Allen Probes observations from September 2012 to December 2015, we conduct a detailed analysis of hiss properties in plasmaspheric plumes and illustrate that corresponding to the highest occurrence probability of plumes at L = 5.0–6.0 and MLT = 18–21, hiss emissions occur concurrently with a rate of >~80%. Plume hiss can efficiently scatter ~10‐ to 100‐keV electrons at rates up to ~10−4 s−1 near the loss cone, and the resultant electron loss timescales vary largely with energy, that is, from less than an hour for tens of kiloelectron volt electrons to several days for hundreds of kiloelectron volt electrons an. . .
Date: 05/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL081863 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL081863
More Details
Authors: Shen Xiao‐Chen, Li Wen, Ma Qianli, Agapitov Oleksiy, and Nishimura Yukitoshi
Title: Statistical Analysis of Transverse Size of Lower Band Chorus Waves Using Simultaneous Multisatellite Observations
Abstract: Chorus waves are known to accelerate or scatter energetic electrons via quasi‐linear or nonlinear wave‐particle interactions in the Earth's magnetosphere. In this letter, by taking advantage of simultaneous observations of chorus waveforms from at least a pair of probes among Van Allen Probes and/or Time History of Events and Macroscale Interactions during Substorms (THEMIS) missions, we statistically calculate the transverse size of lower band chorus wave elements. The average size of lower band chorus wave element is found to be ~315±32 km over L shells of ~5–6. Furthermore, our results suggest that the scale size of lower band chorus tends to be (1) larger at higher L shells; (2) larger at higher magnetic latitudes, especially on the dayside; and (3) larger in the azimuthal direc. . .
Date: 05/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083118 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083118
More Details
Authors: Xu Jiyao, He Zhaohai, Baker D.N., Roth Ilan, Wang C., et al.
Title: Characteristics of high energy proton responses to geomagnetic activities in the inner radiation belt observed by the RBSP satellite
Abstract: High energy trapped particles in the radiation belts constitute potential threats to the functionality of satellites as they enter into those regions. In the inner radiation belt, the characteristics of high‐energy (>20MeV) protons variations during geomagnetic activity times have been studied by implementing four‐year (2013‐2016) observations of the Van Allen probes. An empirical formula has been used to remove the satellite orbit effect, by which proton fluxes have been normalized to the geomagnetic equator. Case studies show that the region of L<1.7 is relatively stable, while L>1.7 is more dynamic and the most significant variation of proton fluxes occurs at L=2.0. The four‐year survey at L=2.0 indicates that for every geomagnetic storm, sharp descent in proton fluxes is accomp. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026205 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026205
More Details
Authors: Dai Guyue, Su Zhenpeng, Liu Nigang, Wang Bin, Zheng Huinan, et al.
Title: Quenching of Equatorial Magnetosonic Waves by Substorm Proton Injections
Abstract: Near equatorial (fast) magnetosonic waves, characterized by high magnetic compressibility, are whistler‐mode emissions destabilized by proton shell/ring distributions. In the past, substorm proton injections are widely known to intensify magnetosonic waves in the inner magnetosphere. Here we report the unexpected observations by the Van Allen Probes of the magnetosonic wave quenching associated with the substorm proton injections under both high‐ and low‐density conditions. The enhanced proton thermal pressure distorted the background magnetic field configuration and the cold plasma density distribution. The reduced phase velocities locally allowed the weak growth or even damping of magnetosonic waves. Meanwhile, the spatially irregularly varying refractive indices might suppress the. . .
Date: 05/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL082944 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082944
More Details
Authors: Goldstein J, De Pascuale S., and Kurth W S
Title: Epoch‐Based Model for Stormtime Plasmapause Location
Abstract: The output of a plasmapause test particle (PTP) code is used to formulate a new epoch‐based plasmapause model. The PTP simulation is run for an ensemble of 60 storms spanning 3 September 2012 to 28 September 2017 and having peak Dst of −60 nT or less, yielding over 7 million model plasmapause locations. Events are automatically identified and epoch times calculated relative to the respective storm peaks. Epoch analysis of the simulated plasmapause is demonstrated to be an effective method to reveal the dynamical phases of plume formation and evolution. The plasmapause radius is found to be strongly correlated with positive solar wind electric field. The epoch‐binned PTP data are used to create the first analytical model of the plasmapause that explicitly includes plumes. We obtain th. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025996 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025996
More Details
Authors: Wei Chao, Dai Lei, Duan Suping, Wang Chi, Wang YuXian, et al.
Title: Multiple satellites observation evidence: High-m Poloidal ULF waves with time-varying polarization states
Abstract: We report multi‐spacecraft observations of ULF waves from Van Allen Probes (RBSP), Magnetospheric Multiscale (MMS), Time History of Events and Macroscale Interactions during Substorm (THEMIS), and Geostationary Operational Environmental Satellites (GOES). On August 31, 2015, global‐scale poloidal waves were observed in data from RBSP‐B, GOES and THEMIS from L=4 to L=8 over a wide range of magnetic local time (MLT). The polarization states varied towards purely poloidal polarity. In two consecutive orbits over 18 hours, RBSP‐A and RBSP‐B recorded gradual variation of the polarization states of the poloidal waves; the ratio (|Ba|/|Br|) decreased from 0.82 to 0.13. After the variation of polarization states, the poloidal ULF waves became very purely poloidal waves, localized in both. . .
Date: 05/2019 Publisher: Earth and Planetary Physics Pages: 190 - 203 DOI: 10.26464/epp2019021 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.26464/epp2019021
More Details
Authors: Chen Margaret W., Lemon Colby L., Hecht James, Sazykin Stanislav, Wolf Richard A., et al.
Title: Diffuse Auroral Electron and Ion Precipitation Effects on RCM‐E Comparisons with Satellite Data During the March 17, 2013 Storm
Abstract: Effects of scattering of electrons from whistler chorus waves and of ions due to field line curvature on diffuse precipitating particle fluxes and ionospheric conductance during the large 17 March 2013 storm are examined using the self‐consistent Rice Convection Model Equilibrium (RCM‐E) model. Electrons are found to dominate the diffuse precipitating particle integrated energy flux, with large fluxes from ~21:00 magnetic local time (MLT) eastward to ~11:00 MLT during the storm main phase. Simulated proton and oxygen ion precipitation due to field line curvature scattering is sporadic and localized, occurring where model magnetic field lines are significantly stretched on the night side at equatorial geocentric radial distances r0 ≳8 RE and/or at r0 ~5.5 to 6.5 RE from dusk to midnig. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026545 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026545
More Details
Authors: Pinto V. A., Mourenas D., Bortnik J, Zhang X.‐J., Artemyev A. V., et al.
Title: Decay of Ultrarelativistic Remnant Belt Electrons Through Scattering by Plasmaspheric Hiss
Abstract: Ultrarelativistic electron remnant belts appear frequently following geomagnetic disturbances and are located in‐between the inner radiation belt and a reforming outer belt. As remnant belts are relatively stable, here we explore the importance of hiss and electromagnetic ion cyclotron waves in controlling the observed decay rates of remnant belt ultrarelativistic electrons in a statistical way. Using measurements from the Van Allen Probes inside the plasmasphere for 25 remnant belt events that occurred between 2012 and 2017 and that are located in the region 2.9Date: Dec-07-2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026509 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026509
More Details
Authors: Lessard Marc R., Paulson Kristoff, Spence Harlan E., Weaver Carol, Engebretson Mark J, et al.
Title: Generation of EMIC Waves and Effects on Particle Precipitation During a Solar Wind Pressure Intensification with B z >
Abstract: During geomagnetic storms, some fraction of the solar wind energy is coupled via reconnection at the dayside magnetopause, a process that requires a southward interplanetary magnetic field Bz. Through a complex sequence of events, some of this energy ultimately drives the generation of electromagnetic ion cyclotron (EMIC) waves, which can then scatter energetic electrons and ions from the radiation belts. In the event described in this paper, the interplanetary magnetic field remained northward throughout the event, a condition unfavorable for solar wind energy coupling through low‐latitude reconnection. While this resulted in SYM/H remaining positive throughout the event (so this may not be considered a storm, in spite of the very high solar wind densities), pressure fluctuations were d. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026477 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026477
More Details
Authors: Agapitov O., Mourenas D., Artemyev A., Hospodarsky G., and Bonnell J.W.
Title: Timescales for electron quasi‐linear diffusion by lower‐band chorus waves: the effects of ω pe / Ω ce dependence on geomagnetic activity
Abstract: Electron scattering by chorus waves is an important mechanism that can lead to fast electron acceleration and loss in the outer radiation belt. Making use of Van Allen Probes measurements, we present the first statistical survey of megaelectron volt electron pitch angle and energy quasi‐linear diffusion rates by chorus waves as a function of L‐shell, local time, and AE index, taking into account the local electron plasma frequency to gyrofrequency ratio ωpe/Ωce, chorus wave frequency, and resonance wave amplitude. We demonstrate that during disturbed periods, ωpe/Ωce strongly decreases in the night sector, leading to a faster electron loss but also a much faster electron energization in two distinct regions just above the plasmapause and at L ~ 3.5–5.5. Spatiotemporal variations . . .
Date: 05/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083446 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083446
More Details
Authors: Zhao H., Johnston W.R., Baker D.N., Li X, Ni B, et al.
Title: Characterization and Evolution of Radiation Belt Electron Energy Spectra Based on the Van Allen Probes Measurements
Abstract: Based on the measurements of ~100‐keV to 10‐MeV electrons from the Magnetic Electron Ion Spectrometer (MagEIS) and Relativistic Electron and Proton Telescope (REPT) on the Van Allen Probes, the radiation belt electron energy spectra characterization and evolution have been investigated systematically. The results show that the majority of radiation belt electron energy spectra can be represented by one of three types of distributions: exponential, power law, and bump‐on‐tail (BOT). The exponential spectra are generally dominant in the outer radiation belt outside the plasmasphere, power law spectra usually appear at high L‐shells during injections of lower‐energy electrons, and BOT spectra commonly dominate inside the plasmasphere at L>2.5 during relatively quiet times. The. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026697 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026697
More Details
Authors: Wei Dong, Yu Yiqun, and He Fei
Title: The Magnetospheric Driving Source of Double‐Peak Subauroral Ion Drifts: Double Ring Current Pressure Peaks
Abstract: Double‐peak subauroral ion drifts (DSAIDs), characterized by two high‐speed flow channels, is a newly identified flow structure in the subauroral ionosphere. He et al. (2016, https://doi.org/10.1002/2016GL069133) proposed that two region 2 field‐aligned currents (R2 FACs) might cause the DSAIDs. However, the underlying physical process that drives the double R2 FACs is unknown. This study reports a DSAIDs event and reveals its magnetospheric drivers. Defense Meteorological Satellite Program F18 satellite observed DSAIDs in the duskside subauroral region, which corresponded well to two low‐density troughs and two R2 FACs. The Van Allen Probe B demonstrated that intense substorm ion injections recurrently occurred prior to the formation of DSAIDs, suggesting a potential magnetospheri. . .
Date: 06/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083186 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083186
More Details
Authors: Zhu Hui, Gu Wenyao, and Chen Lunjin
Title: Statistical analysis on plasmatrough exohiss waves from the Van Allen Probes
Abstract: In this study using Van Allen Probe wave observations we investigate the statistical properties of exohiss waves, which are structureless whistler mode waves observed outside the plasmapause. The exohiss waves are identified based on the cold electron number density, frequency distribution, ellipticity, and wave normal angle. The statistical analysis on exohiss wave properties shows that exohiss waves prefer to occur over 3Date: 06/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026359 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026359
More Details
Authors: Bingley L., Angelopoulos V, Sibeck D., Zhang X., and Halford A.
Title: The Evolution of a Pitch‐Angle “Bite‐Out” Scattering Signature Caused by EMIC Wave Activity: A Case Study
Abstract: Electromagnetic ion cyclotron (EMIC) waves are understood to be one of the dominant drivers of relativistic electron loss from Earth's radiation belts. Theory predicts that the associated gyroresonant wave‐particle interaction results in a distinct energy‐dependent “bite‐out” signature in the normalized flux distribution of electrons as they are scattered into the loss cone. We identify such signatures along with the responsible EMIC waves captured in situ by the Van Allen Probes on 15–16 February 2017. Using the cold plasma approximation, we predict the pitch‐angle cutoffs for the scattering signature for the captured EMIC wave and find it in good agreement with the observed electron bite‐out scattering signature. Employing the close conjunction between the Van Allen Probe. . .
Date: 06/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026292 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026292
More Details
Authors: Ma Q, Li W, Yue C., Thorne R M, Bortnik J, et al.
Title: Ion Heating by Electromagnetic Ion Cyclotron Waves and Magnetosonic Waves in the Earth's Inner Magnetosphere
Abstract: Electromagnetic ion cyclotron (EMIC) waves and magnetosonic waves are commonly observed in the Earth's magnetosphere associated with enhanced ring current activity. Using wave and ion measurements from the Van Allen Probes, we identify clear correlations between the hydrogen‐ and helium‐band EMIC waves with the enhancement of trapped helium and oxygen ion fluxes, respectively. We calculate the diffusion coefficients of different ion species using quasi‐linear theory to understand the effects of resonant scattering by EMIC waves. Our calculations indicate that EMIC waves can cause pitch angle scattering loss of several keV to hundreds of keV ions, and heating of tens of eV to several keV helium and oxygen ions by hydrogen‐ and helium‐band EMIC waves, respectively. Moreover, we fou. . .
Date: 06/2019 Publisher: Geophysical Research Letters Pages: 6258 - 6267 DOI: 10.1029/2019GL083513 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083513
More Details
Authors: Zhang X.‐J., Mourenas D., Artemyev A. V., Angelopoulos V, Bortnik J, et al.
Title: Nonlinear Electron Interaction With Intense Chorus Waves: Statistics of Occurrence Rates
Abstract: A comprehensive statistical analysis on 8 years of lower‐band chorus wave packets measured by the Van Allen Probes and THEMIS spacecraft is performed to examine whether, when, and where these waves are above the theoretical threshold for nonlinear resonant wave‐particle interaction. We find that ∼5–30% of all chorus waves interact nonlinearly with ∼30‐ to 300‐keV electrons possessing equatorial pitch angles of >40° in the outer radiation belt, especially during disturbed (AE>500 nT) periods with energetic particles associated with injections from the plasma sheet. Such considerable occurrence rates of nonlinear interactions imply that the evolution of energetic electron fluxes should be dominated by nonlinear effects, rather than by quasi‐linear diffusion as commonly assum. . .
Date: 06/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083833 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083833
More Details
Authors: Patel Maulik, Li Zhao, Hudson Mary, Claudepierre Seth, and Wygant John
Title: Simulation of Prompt Acceleration of Radiation Belt Electrons During the 16 July 2017 Storm
Abstract: We investigate the prompt enhancement of radiation belt electron flux observed by the Relativistic Electron Proton Telescope instrument on board Van Allen Probes following the 16 July 2017 CME‐shock compression using MHD‐test particle simulations. The prompt enhancements can be explained by the source population interacting with the azimuthally directed electric field impulses induced by CME‐shock compressions of the dayside magnetopause. Electrons in drift resonance with the electric field impulse were accelerated by ∼ 0.6 MeV on a drift period timescale (in minutes) as the impulse propagated from the dayside to the nightside around the flanks of the magnetosphere. MHD test particle simulation of energization and drift phase bunching, due to the bipolar electric field that accompa. . .
Date: 06/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083257 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083257
More Details
Authors: Yu Xiongdong, and Yuan Zhigang
Title: Saturation Characteristics of Parallel EMIC Waves in the Inner Magnetosphere
Abstract: In this letter, detailed evolution process of parallel electromagnetic ion cyclotron waves in the inner magnetosphere has been investigated through quasilinear theory. A new saturation has been found to occur after the usual first saturation. During the interval between these two saturations, the energy transfers from H+ band to He+ band electromagnetic ion cyclotron waves. Moreover, through a best fitting, we obtain new model parameters for the anisotropy‐beta inverse relation of hot H+, which identifies the threshold of ion cyclotron instabilities in the inner magnetosphere. In situ observations of the Van Allen Probe mission also verify these new model parameters. Therefore, our results reveal the evolution process and saturation characteristics of parallel electromagnetic ion cyclotr. . .
Date: 07/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083630 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083630
More Details
Authors: Zhao Wanli, Liu Si, Zhang Sai, Zhou Qinghua, Yang Chang, et al.
Title: Global Occurrences of Auroral Kilometric Radiation Related to Suprathermal Electrons in Radiation Belts
Abstract: Auroral kilometric radiation (AKR) can potentially produce serious damage to space‐borne systems by accelerating trapped radiation belt electrons to relativistic energies. Here we examine the global occurrences of AKR emissions in radiation belts based on Van Allen Probes observations from 1 October 2012 to 31 December 2016. The statistical results (1,848 events in total) show that AKR covers a broad region of L= 3–6.5 and 00–24 magnetic local time (MLT), with a higher occurrence on the nightside (20–24 MLT and 00–04 MLT) within L= 5–6.5. All the AKR events are observed to be accompanied with suprathermal (∼1 keV) electron flux enhancements. During active geomagnetic periods, both AKR occurrences and electron injections tend to be more distinct, and AKR emission extends to th. . .
Date: 07/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083944 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083944
More Details
Authors: Pandya Megha, Veenadhari B., Ebihara Y., Kanekal S.G., and Baker D.N.
Title: Variation of Radiation belt electron flux during CME and CIR driven geomagnetic storms: Van Allen Probes observations
Abstract: Relativistic electron flux responses in the inner magnetosphere are investigated for 28 magnetic storms driven by Corotating Interaction Region (CIR) and 27 magnetic storms driven by Coronal Mass Ejection (CME), using data from the Relativistic Electron‐Proton Telescope (REPT) instrument on board Van‐Allen Probes from Oct‐2012 to May‐2017. In this present study we analyze the role of CIRs and CMEs in electron dynamics by sorting the electron fluxes in terms of averaged solar wind parameters, L‐values, and energies. The major outcomes from our study are: (i) At L = 3 and E = 3.4 MeV, for >70% cases the electron flux remains stable, while at L = 5, for ~82% cases it changes with the geomagnetic conditions. (ii) At L = 5, ~53% of the CIR storms and 30% of the CME storms show electro. . .
Date: 07/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026771 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026771
More Details

Pages