Biblio

Found 643 results
Filters: Keyword is Van Allen Probes  [Clear All Filters]
2019
Authors: Gkioulidou Matina, Ohtani S, Ukhorskiy A Y, Mitchell D G, Takahashi K., et al.
Title: Low-Energy (+ Ion Outflow Directly Into the Inner Magnetosphere: Van Allen Probes Observations
Abstract: The heavy ion component of the low‐energy (eV to hundreds of eV) ion population in the inner magnetosphere, also known as the O+ torus, is a crucial population for various aspects of magnetospheric dynamics. Yet even though its existence has been known since the 1980s, its formation remains an open question. We present a comprehensive study of a low‐energy (Date: 01/2019 Publisher: Journal of Geophysical Research: Space Physics Pages: 405 - 419 DOI: 10.1029/2018JA025862 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025862
More Details
Authors: Wei Dong, Yu Yiqun, and He Fei
Title: The Magnetospheric Driving Source of Double‐Peak Subauroral Ion Drifts: Double Ring Current Pressure Peaks
Abstract: Double‐peak subauroral ion drifts (DSAIDs), characterized by two high‐speed flow channels, is a newly identified flow structure in the subauroral ionosphere. He et al. (2016, https://doi.org/10.1002/2016GL069133) proposed that two region 2 field‐aligned currents (R2 FACs) might cause the DSAIDs. However, the underlying physical process that drives the double R2 FACs is unknown. This study reports a DSAIDs event and reveals its magnetospheric drivers. Defense Meteorological Satellite Program F18 satellite observed DSAIDs in the duskside subauroral region, which corresponded well to two low‐density troughs and two R2 FACs. The Van Allen Probe B demonstrated that intense substorm ion injections recurrently occurred prior to the formation of DSAIDs, suggesting a potential magnetospheri. . .
Date: 06/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083186 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083186
More Details
Authors: Ozeke L. G., Mann I. R., Claudepierre S G, Henderson M., Morley S. K., et al.
Title: The March 2015 Superstorm Revisited: Phase Space Density Profiles and Fast ULF Wave Diffusive Transport
Abstract: We present the temporal evolution of electron Phase Space Density (PSD) in the outer radiation belt during the intense March 2015 geomagnetic storm. Comparing observed PSD profiles as a function of L* at fixed first, M, and second, K, adiabatic invariants with those produced by simulations is critical for determining the physical processes responsible for the outer radiation belt dynamics. Here we show that the bulk of the accelerated and enhanced outer radiation belt population consists of electrons with K < 0.17 G1/2Re. For these electrons, the observed PSD versus L* profiles during the recovery phase of the storm have a positive radial gradient. We compare the observed temporal evolution of the PSD profiles during the recovery phase with those produced by radial diffusion simulations dr. . .
Date: 01/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026326 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026326
More Details
Authors: Zhu Hui, Chen Lunjin, Liu Xu, and Shprits Yuri Y
Title: Modulation of Locally Generated Equatorial Noise by ULF Wave
Abstract: In this paper we report a rare and fortunate event of fast magnetosonic (MS, also called equatorial noise) waves modulated by compressional ultralow frequency (ULF) waves measured by Van Allen Probes. The characteristics of MS waves, ULF waves, proton distribution, and their potential correlations are analyzed. The results show that ULF waves can modulate the energetic ring proton distribution and in turn modulate the MS generation. Furthermore, the variation of MS intensities is attributed to not only ULF wave activities but also the variation of background parameters, for example, number density. The results confirm the opinion that MS waves are generated by proton ring distribution and propose a new modulation phenomenon.
Date: 04/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026199 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026199
More Details
Authors: Wei Chao, Dai Lei, Duan Suping, Wang Chi, Wang YuXian, et al.
Title: Multiple satellites observation evidence: High-m Poloidal ULF waves with time-varying polarization states
Abstract: We report multi‐spacecraft observations of ULF waves from Van Allen Probes (RBSP), Magnetospheric Multiscale (MMS), Time History of Events and Macroscale Interactions during Substorm (THEMIS), and Geostationary Operational Environmental Satellites (GOES). On August 31, 2015, global‐scale poloidal waves were observed in data from RBSP‐B, GOES and THEMIS from L=4 to L=8 over a wide range of magnetic local time (MLT). The polarization states varied towards purely poloidal polarity. In two consecutive orbits over 18 hours, RBSP‐A and RBSP‐B recorded gradual variation of the polarization states of the poloidal waves; the ratio (|Ba|/|Br|) decreased from 0.82 to 0.13. After the variation of polarization states, the poloidal ULF waves became very purely poloidal waves, localized in both. . .
Date: 05/2019 Publisher: Earth and Planetary Physics Pages: 190 - 203 DOI: 10.26464/epp2019021 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.26464/epp2019021
More Details
Authors: Stepanova M., Antonova E.E., Moya P.S., Pinto V.A., and Valdivia J.A.
Title: Multisatellite Analysis of Plasma Pressure in the Inner Magnetosphere During the 1 June 2013 Geomagnetic Storm
Abstract: Using data from Defense Meteorological Satellite Program 16–18, National Oceanic and Atmospheric Administration 15–19, and METOP 1–2 satellites, we reconstructed for the first time a two‐dimensional statistical distribution of plasma pressure in the inner magnetosphere during the 1 June 2013 geomagnetic storm with time resolution of 6 hr. Simultaneously, we used the data from Van Allen Probes and Time History of Events and Macroscale Interactions missions to obtain the in situ plasma pressure in the equatorial plane. This allowed us to corroborate that the dipole mapping works reasonably well during the storm time and that variations of plasma pressure are consistent at low and high altitudes; namely, we observed a drastic increase in plasma pressure a few hours before the storm on. . .
Date: 01/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025965 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025965
More Details
Authors: Baker Daniel N, Hoxie Vaughn, Zhao Hong, Jaynes Allison N., Kanekal Shri, et al.
Title: Multiyear Measurements of Radiation Belt Electrons: Acceleration, Transport, and Loss
Abstract: In addition to clarifying morphological structures of the Earth's radiation belts, it has also been a major achievement of the Van Allen Probes mission to understand more thoroughly how highly relativistic and ultrarelativistic electrons are accelerated deep inside the radiation belts. Prior studies have demonstrated that electrons up to energies of 10 megaelectron volts (MeV) can be produced over broad regions of the outer Van Allen zone on timescales of minutes to a few hours. It often is seen that geomagnetic activity driven by strong solar storms (i.e., coronal mass ejections, or CMEs) almost inexorably leads to relativistic electron production through the intermediary step of intense magnetospheric substorms. In this study, we report observations over the 6‐year period 1 September 2. . .
Date: 03/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026259 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026259
More Details
Authors: Wang Zihan, Zou Shasha, Shepherd Simon G., Liang Jun, Gjerloev Jesper W., et al.
Title: Multi‐instrument Observations of Mesoscale Enhancement of Subauroral Polarization Stream Associated With an Injection
Abstract: Subauroral polarization streams (SAPS) prefer geomagnetically disturbed conditions and strongly correlate with geomagnetic indexes. However, the temporal evolution of SAPS and its relationship with dynamic and structured ring current and particle injection are still not well understood. In this study, we performed detailed analysis of temporal evolution of SAPS during a moderate storm on 18 May 2013 using conjugate observations of SAPS from the Van Allen Probes (VAP) and the Super Dual Auroral Radar Network (SuperDARN). The large‐scale SAPS (LS‐SAPS) formed during the main phase of this storm and decayed due to the northward turning of the interplanetary magnetic field. A mesoscale (approximately several hundreds of kilometers zonally) enhancement of SAPS was observed by SuperDARN at 0. . .
Date: 03/2019 Publisher: Journal of Geophysical Research: Space Physics Pages: 1770 - 1784 DOI: 10.1029/2019JA026535 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026535
More Details
Authors: Zhang X.‐J., Mourenas D., Artemyev A. V., Angelopoulos V, Bortnik J, et al.
Title: Nonlinear Electron Interaction With Intense Chorus Waves: Statistics of Occurrence Rates
Abstract: A comprehensive statistical analysis on 8 years of lower‐band chorus wave packets measured by the Van Allen Probes and THEMIS spacecraft is performed to examine whether, when, and where these waves are above the theoretical threshold for nonlinear resonant wave‐particle interaction. We find that ∼5–30% of all chorus waves interact nonlinearly with ∼30‐ to 300‐keV electrons possessing equatorial pitch angles of >40° in the outer radiation belt, especially during disturbed (AE>500 nT) periods with energetic particles associated with injections from the plasma sheet. Such considerable occurrence rates of nonlinear interactions imply that the evolution of energetic electron fluxes should be dominated by nonlinear effects, rather than by quasi‐linear diffusion as commonly assum. . .
Date: 06/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083833 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083833
More Details
Authors: Soto-Chavez A. R., Lanzerotti L J, Manweiler J W, Gerrard A., Cohen R., et al.
Title: Observational evidence of the drift-mirror plasma instability in Earth's inner magnetosphere
Abstract: We report on evidence for the generation of an ultra-low frequency plasma wave by the drift-mirror plasma instability in the dynamic plasma environment of Earth's inner magnetosphere. The plasma measurements are obtained from the Radiation Belt Storm Probes Ion Composition Experiment onboard NASA's Van Allen Probes Satellites. We show that the measured wave-particle interactions are driven by the drift-mirror instability. Theoretical analysis of the data demonstrates that the drift-mirror mode plasma instability condition is well satisfied. We also demonstrate, for the first time, that the measured wave growth rate agrees well with the predicted linear theory growth rate. Hence, the in-situ space plasma observations and theoretical analysis demonstrate that local generation of ultra-low fr. . .
Date: 04/2019 Publisher: Physics of Plasmas Pages: 042110 DOI: 10.1063/1.5083629 Available at: https://doi.org/10.1063/1.5083629
More Details
Authors: Kilpua E. K. J., Turner D. L., Jaynes A. N., Hietala H., Koskinen H. E. J., et al.
Title: Outer Van Allen Radiation Belt Response to Interacting Interplanetary Coronal Mass Ejections
Abstract: We study the response of the outer Van Allen radiation belt during an intense magnetic storm on 15–22 February 2014. Four interplanetary coronal mass ejections (ICMEs) arrived at Earth, of which the three last ones were interacting. Using data from the Van Allen Probes, we report the first detailed investigation of electron fluxes from source (tens of kiloelectron volts) to core (megaelectron volts) energies and possible loss and acceleration mechanisms as a response to substructures (shock, sheath and ejecta, and regions of shock‐compressed ejecta) in multiple interacting ICMEs. After an initial enhancement induced by a shock compression of the magnetosphere, core fluxes strongly depleted and stayed low for 4 days. This sustained depletion can be related to a sequence of ICME substruc. . .
Date: 03/2019 Publisher: Journal of Geophysical Research: Space Physics Pages: 1927 - 1947 DOI: 10.1029/2018JA026238 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026238
More Details
Authors: Chen Yue, Reeves Geoffrey D, Fu Xiangrong, and Henderson Michael
Title: PreMevE: New Predictive Model for Megaelectron-volt Electrons inside Earth's Outer Radiation Belt
Abstract: This work designs a new model called PreMevE to predict storm‐time distributions of relativistic electrons within Earth's outer radiation belt. This model takes advantage of the cross‐energy, ‐L‐shell, and –pitch‐angle coherence associated with wave‐electron resonant interactions, ingests observations from belt boundaries—mainly by NOAA POES in low‐Earth‐orbits (LEOs), and provides high‐fidelity nowcast (multiple‐hour prediction) and forecast (> ~1 day) of MeV electron fluxes over L‐shells between 2.8‐7 through linear prediction filters. PreMevE can not only reliably anticipate incoming enhancements of MeV electrons during storms with at least 1‐day forewarning time, but also accurately specify the evolving event‐specific electron spatial distributions after. . .
Date: 02/2019 Publisher: Space Weather DOI: 10.1029/2018SW002095 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018SW002095
More Details
Authors: Shi Run, Li Wen, Ma Qianli, Green Alex, Kletzing Craig A., et al.
Title: Properties of Whistler Mode Waves in Earth's Plasmasphere and Plumes
Abstract: Whistler mode wave properties inside the plasmasphere and plumes are systematically investigated using 5‐year data from Van Allen Probes. The occurrence and intensity of whistler mode waves in the plasmasphere and plumes exhibit dependences on magnetic local time, L, and AE. Based on the dependence of the wave normal angle and Poynting flux direction on L shell and normalized wave frequency to electron cyclotron frequency (fce), whistler mode waves are categorized into four types. Type I: ~0.5 fce with oblique wave normal angles mostly in plumes; Type II: 0.01–0.5 fce with small wave normal angles in the outer plasmasphere or inside plumes; Type III: <0.01 fce with oblique wave normal angles mostly within the plasmasphere or plumes; Type IV: 0.05–0.5 fce with oblique wave normal angl. . .
Date: 01/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026041 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026041
More Details
Authors: Li W, Shen X.‐C., Ma Q, Capannolo L., Shi R., et al.
Title: Quantification of Energetic Electron Precipitation Driven by Plume Whistler Mode Waves, Plasmaspheric Hiss, and Exohiss
Abstract: Whistler mode waves are important for precipitating energetic electrons into Earth's upper atmosphere, while the quantitative effect of each type of whistler mode wave on electron precipitation is not well understood. In this letter, we evaluate energetic electron precipitation driven by three types of whistler mode waves: plume whistler mode waves, plasmaspheric hiss, and exohiss observed outside the plasmapause. By quantitatively analyzing three conjunction events between Van Allen Probes and POES/MetOp satellites, together with quasi‐linear calculation, we found that plume whistler mode waves are most effective in pitch angle scattering loss, particularly for the electrons from tens to hundreds of keV. Our new finding provides the first direct evidence of effective pitch angle scatter. . .
Date: 03/2019 Publisher: Geophysical Research Letters Pages: 3615 - 3624 DOI: 10.1029/2019GL082095 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082095
More Details
Authors: Yoon Peter H., Hwang Junga, Kim Hyangpyo, and Seough Jungjoon
Title: Quasi Thermal Noise Spectroscopy for Van Allen Probes
Abstract: Quasi thermal fluctuations in the Langmuir/upper‐hybrid frequency range are pervasively observed in space plasmas including the radiation belt and the ring current region of inner magnetosphere as well as the solar wind. The quasi thermal noise spectroscopy may be employed in order to determine the electron density and temperature as well as to diagnose the properties of energetic electrons when direct measurements are not available. However, when employing the technique, one must carefully take the spacecraft orientation into account. The present paper takes the upper‐hybrid and multiple harmonic—or (n + 1/2)fce—emissions measured by the Van Allen Probes as an example in order to illustrate how the spacecraft antenna geometrical factor can be incorporated into the theoretical . . .
Date: 04/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026460 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026460
More Details
Authors: Dai Guyue, Su Zhenpeng, Liu Nigang, Wang Bin, Zheng Huinan, et al.
Title: Quenching of Equatorial Magnetosonic Waves by Substorm Proton Injections
Abstract: Near equatorial (fast) magnetosonic waves, characterized by high magnetic compressibility, are whistler‐mode emissions destabilized by proton shell/ring distributions. In the past, substorm proton injections are widely known to intensify magnetosonic waves in the inner magnetosphere. Here we report the unexpected observations by the Van Allen Probes of the magnetosonic wave quenching associated with the substorm proton injections under both high‐ and low‐density conditions. The enhanced proton thermal pressure distorted the background magnetic field configuration and the cold plasma density distribution. The reduced phase velocities locally allowed the weak growth or even damping of magnetosonic waves. Meanwhile, the spatially irregularly varying refractive indices might suppress the. . .
Date: 05/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL082944 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082944
More Details
Authors: Aseev N. A., and Shprits Y Y
Title: Reanalysis of Ring Current Electron Phase Space Densities Using Van Allen Probe Observations, Convection Model, and Log‐Normal Kalman Filter
Abstract: Models of ring current electron dynamics unavoidably contain uncertainties in boundary conditions, electric and magnetic fields, electron scattering rates, and plasmapause location. Model errors can accumulate with time and result in significant deviations of model predictions from observations. Data assimilation offers useful tools which can combine physics‐based models and measurements to improve model predictions. In this study, we systematically analyze performance of the Kalman filter applied to a log‐transformed convection model of ring current electrons and Van Allen Probe data. We consider long‐term dynamics of μ = 2.3 MeV/G and K = 0.3 G1/2RE electrons from 1 February 2013 to 16 June 2013. By using synthetic data, we show that the Kalman filter is capable of correcting . . .
Date: 04/2019 Publisher: Space Weather Pages: 619 - 638 DOI: 10.1029/2018SW002110 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018SW002110
More Details
Authors: Aseev N.A., and Shprits Y.Y.
Title: Reanalysis of ring current electron phase space densities using Van Allen Probe observations, convection model, and log‐normal Kalman filter
Abstract: Models of ring current electron dynamics unavoidably contain uncertainties in boundary conditions, electric and magnetic fields, electron scattering rates, and plasmapause location. Model errors can accumulate with time and result in significant deviations of model predictions from observations. Data assimilation offers useful tools which can combine physics‐based models and measurements to improve model predictions. In this study, we systematically analyze performance of the Kalman filter applied to a log‐transformed convection model of ring current electrons and Van Allen Probe data. We consider long‐term dynamics of μ = 2.3 MeV/G and K = 0.3 G1/2RE electrons from 1 February 2013 to 16 June 2013. By using synthetic data, we show that the Kalman filter is capable of correcting erro. . .
Date: 04/2019 Publisher: Space Weather DOI: 10.1029/2018SW002110 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018SW002110
More Details
Authors: Yue Chao, Jun Chae‐Woo, Bortnik Jacob, An Xin, Ma Qianli, et al.
Title: The Relationship Between EMIC Wave Properties and Proton Distributions Based on Van Allen Probes Observations
Abstract: Plasma kinetic theory predicts that sufficiently anisotropic proton distribution will excite electromagnetic ion cyclotron (EMIC) waves, which in turn relax the proton distribution to a marginally stable state creating an upper bound on the relaxed proton anisotropy. Here, using EMIC wave observations and coincident plasma measurements made by Van Allen Probes in the inner magnetosphere, we show that the proton distributions are well constrained by this instability to a marginally stable state. Near the threshold, the probability of EMIC wave occurrence is highest, having left‐handed polarization and observed near the magnetic equator with relatively small wave normal angles, indicating that these waves are locally generated. In addition, EMIC waves are distributed in two magnetic local . . .
Date: 04/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL082633 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082633
More Details
Authors: Mann I. R., Ozeke L. G., Morley S. K., Murphy K. R., Claudepierre S G, et al.
Title: Reply to 'The dynamics of Van Allen belts revisited'
Abstract: N/A
Date: 02/2019 Publisher: Nature Physics Pages: 103 - 104 DOI: 10.1038/nphys4351 Available at: http://www.nature.com/doifinder/10.1038/nphys4351
More Details
Authors: Turner D. L., Kilpua E. K. J., Hietala H., Claudepierre S G, O'Brien T P, et al.
Title: The Response of Earth's Electron Radiation Belts to Geomagnetic Storms: Statistics From the Van Allen Probes Era Including Effects From Different Storm Drivers
Abstract: A statistical study was conducted of Earth's radiation belt electron response to geomagnetic storms using NASA's Van Allen Probes mission. Data for electrons with energies ranging from 30 keV to 6.3 MeV were included and examined as a function of L‐shell, energy, and epoch time during 110 storms with SYM‐H ≤−50 nT during September 2012 to September 2017 (inclusive). The radiation belt response revealed clear energy and L‐shell dependencies, with tens of keV electrons enhanced at all L‐shells (2.5 ≤ L ≤ 6) in all storms during the storm commencement and main phase and then quickly decaying away during the early recovery phase, low hundreds of keV electrons enhanced at lower L‐shells (~3 ≤ L ≤ ~4) in upward of 90% of all storms and then decaying gradually during the rec. . .
Date: 01/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026066 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026066
More Details
Authors: Claudepierre S G, O'Brien T P, Looper M D, Blake J B, Fennell J. F., et al.
Title: A Revised Look at Relativistic Electrons in the Earth's Inner Radiation Zone and Slot Region
Abstract: We describe a new, more accurate procedure for estimating and removing inner zone background contamination from Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) radiation belt measurements. This new procedure is based on the underlying assumption that the primary source of background contamination in the electron measurements at L shells less than three, energetic inner belt protons, is relatively stable. Since a magnetic spectrometer can readily distinguish between foreground electrons and background signals, we are able to exploit the proton stability to construct a model of the background contamination in each MagEIS detector by only considering times when the measurements are known to be background dominated. We demonstrate, for relativistic electron measurements in the inn. . .
Date: 01/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026349 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026349
More Details
Authors: Yu Xiongdong, and Yuan Zhigang
Title: Saturation Characteristics of Parallel EMIC Waves in the Inner Magnetosphere
Abstract: In this letter, detailed evolution process of parallel electromagnetic ion cyclotron waves in the inner magnetosphere has been investigated through quasilinear theory. A new saturation has been found to occur after the usual first saturation. During the interval between these two saturations, the energy transfers from H+ band to He+ band electromagnetic ion cyclotron waves. Moreover, through a best fitting, we obtain new model parameters for the anisotropy‐beta inverse relation of hot H+, which identifies the threshold of ion cyclotron instabilities in the inner magnetosphere. In situ observations of the Van Allen Probe mission also verify these new model parameters. Therefore, our results reveal the evolution process and saturation characteristics of parallel electromagnetic ion cyclotr. . .
Date: 07/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083630 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083630
More Details
Authors: Cao Xing, Ni Binbin, Summers Danny, Shprits Yuri Y, Gu Xudong, et al.
Title: Sensitivity of EMIC Wave-Driven Scattering Loss of Ring Current Protons to Wave Normal Angle Distribution
Abstract: Electromagnetic ion cyclotron waves have long been recognized to play a crucial role in the dynamic loss of ring current protons. While the field‐aligned propagation approximation of electromagnetic ion cyclotron waves was widely used to quantify the scattering loss of ring current protons, in this study, we find that the wave normal distribution strongly affects the pitch angle scattering efficiency of protons. Increase of peak normal angle or angular width can considerably reduce the scattering rates of ≤10 keV protons. For >10 keV protons, the field‐aligned propagation approximation results in a pronounced underestimate of the scattering of intermediate equatorial pitch angle protons and overestimates the scattering of high equatorial pitch angle protons by orders of magnitude. Ou. . .
Date: 01/2019 Publisher: Geophysical Research Letters Pages: 590 - 598 DOI: 10.1029/2018GL081550 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL081550
More Details
Authors: Lejosne Solène, and Mozer F S
Title: Shorting Factor In‐Flight Calibration for the Van Allen Probes DC Electric Field Measurements in the Earth's Plasmasphere
Abstract: Satellite‐based direct electric field measurements deliver crucial information for space science studies. Yet they require meticulous design and calibration. In‐flight calibration of double‐probe instruments is usually presented in the most common case of tenuous plasmas, where the presence of an electrostatic structure surrounding the charged spacecraft alters the geophysical electric field measurements. To account for this effect and the uncertainty in the boom length, the measured electric field is multiplied by a parameter called the shorting factor (sf). In the plasmasphere, the Debye length is very small in comparison with spacecraft dimension, and there is no shorting of the electric field measurements (sf = 1). However, the electric field induced by spacecraft motion greatly . . .
Date: 04/2019 Publisher: Earth and Space Science Pages: 646 - 654 DOI: 10.1029/2018EA000550 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018EA000550
More Details
Authors: Patel Maulik, Li Zhao, Hudson Mary, Claudepierre Seth, and Wygant John
Title: Simulation of Prompt Acceleration of Radiation Belt Electrons During the 16 July 2017 Storm
Abstract: We investigate the prompt enhancement of radiation belt electron flux observed by the Relativistic Electron Proton Telescope instrument on board Van Allen Probes following the 16 July 2017 CME‐shock compression using MHD‐test particle simulations. The prompt enhancements can be explained by the source population interacting with the azimuthally directed electric field impulses induced by CME‐shock compressions of the dayside magnetopause. Electrons in drift resonance with the electric field impulse were accelerated by ∼ 0.6 MeV on a drift period timescale (in minutes) as the impulse propagated from the dayside to the nightside around the flanks of the magnetosphere. MHD test particle simulation of energization and drift phase bunching, due to the bipolar electric field that accompa. . .
Date: 06/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083257 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083257
More Details
Authors: Eshetu W. W., Lyon J G, Hudson M K, and Wiltberger M. J.
Title: Simulations of Electron Energization and Injection by BBFs Using High-Resolution LFM MHD Fields
Abstract: We study electron injection and energization by bursty bulk flows (BBFs), by tracing electron trajectories using magnetohydrodynamic (MHD) field output from the Lyon‐Fedder‐Mobarry (LFM) code. The LFM MHD simulations were performed using idealized solar wind conditions to produce BBFs. We show that BBFs can inject energetic electrons of few to 100 keV from the magnetotatail beyond −24 RE to inward of geosynchronous, while accelerating them in the process. We also show the dependence of energization and injection on the initial relative position of the electrons to the magnetic field structure of the BBF, the initial pitch angle, and the initial energy. In addition, we have shown that the process can be nonadiabatic with violation of the first adiabatic invariant (μ). Further, we d. . .
Date: 02/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025789 Available at: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018JA025789
More Details
Authors: Yuan Zhigang, Yu Xiongdong, Ouyang Zhihai, Yao Fei, Huang Shiyong, et al.
Title: Simultaneous trapping of EMIC and MS waves by background plasmas
Abstract: Electromagnetic ion cyclotron waves and fast magnetosonic waves are found to be simultaneously modulated by background plasma density: both kinds of waves were observed in high plasma density regions but vanished in low density regions. Theoretical analysis based on Snell's law and linear growth theory have been utilized to investigate the physical mechanisms driving such modulation. It is suggested that the modulation of fast magnetosonic waves might be due to trapping by plasma density structures, which results from a conservation of the parameter Q during their propagation. Here Q = nrsinψ, with n the refractive index, r the radial distance, and ψ the wave azimuthal angle. As for electromagnetic ion cyclotron waves, the modulation might be owed to the ion composition difference betwee. . .
Date: 02/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026149 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026149
More Details
Authors: Thaller S. A., Wygant J R, Cattell C. A., Breneman A. W., Tyler E., et al.
Title: Solar rotation period driven modulations of plasmaspheric density and convective electric field in the inner magnetosphere
Abstract: This paper presents the first analysis of Van Allen Probes measurements of the cold plasma density and electric field in the inner magnetosphere to show that intervals of strong modulation at the solar rotation period occur in the locations of the outer plasmasphere and plasmapause (~0.7 RE peak‐to‐peak), in the large‐scale electric field (~0.24 mV/m peak‐to‐peak), and in the cold plasma density (~250 cm‐3 – ~70 cm‐3 peak‐to‐peak). Solar rotation modulation of the inner magnetosphere is more apparent in the declining phase of the solar cycle than near solar maximum. The periodicities in these parameters are compared to solar EUV irradiance, solar wind dawn‐dusk electric field, and Kp. The variations in the plasmapause location at the solar rotation period anti‐corre. . .
Date: 02/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026365 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026365
More Details
Authors: Lanzerotti Louis J.
Title: Space Research and Space Weather: Some Personal Vignettes 1965 to Early 1980s
Abstract: Personal vignettes are given on early days of space research, space weather, and space advisory activities from 1965 to early 1980s.
Date: 04/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026763 Available at: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JA026763
More Details
Authors: Kim Kyung‐Chan, and Shprits Yuri
Title: Statistical Analysis of Hiss Waves in Plasmaspheric Plumes Using Van Allen Probe Observations
Abstract: Plasmaspheric hiss waves commonly observed in high‐density regions in the Earth's magnetosphere are known to be one of the main contributors to the loss of radiation belt electrons. There has been a lot of effort to investigate the distributions of hiss waves in the plasmasphere, while relatively little attention has been given to those in the plasmaspheric plume. In this study, we present for the first time a statistical analysis of the occurrence and the spatial distribution of wave amplitudes and wave normal angles for hiss waves in plumes using Van Allen Probes observations during the period of October 2012 to December 2016. Statistical results show that a wide range of hiss wave amplitudes in plumes from a few picotesla to >100 pT is observed, but a modest (<20 pT) wave amplitude is. . .
Date: 03/2019 Publisher: Journal of Geophysical Research: Space Physics Pages: 1904 - 1915 DOI: 10.1029/2018JA026458 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026458
More Details
Authors: Shen Xiao‐Chen, Li Wen, Ma Qianli, Agapitov Oleksiy, and Nishimura Yukitoshi
Title: Statistical Analysis of Transverse Size of Lower Band Chorus Waves Using Simultaneous Multisatellite Observations
Abstract: Chorus waves are known to accelerate or scatter energetic electrons via quasi‐linear or nonlinear wave‐particle interactions in the Earth's magnetosphere. In this letter, by taking advantage of simultaneous observations of chorus waveforms from at least a pair of probes among Van Allen Probes and/or Time History of Events and Macroscale Interactions during Substorms (THEMIS) missions, we statistically calculate the transverse size of lower band chorus wave elements. The average size of lower band chorus wave element is found to be ~315±32 km over L shells of ~5–6. Furthermore, our results suggest that the scale size of lower band chorus tends to be (1) larger at higher L shells; (2) larger at higher magnetic latitudes, especially on the dayside; and (3) larger in the azimuthal direc. . .
Date: 05/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083118 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083118
More Details
Authors: Zhu Hui, Gu Wenyao, and Chen Lunjin
Title: Statistical analysis on plasmatrough exohiss waves from the Van Allen Probes
Abstract: In this study using Van Allen Probe wave observations we investigate the statistical properties of exohiss waves, which are structureless whistler mode waves observed outside the plasmapause. The exohiss waves are identified based on the cold electron number density, frequency distribution, ellipticity, and wave normal angle. The statistical analysis on exohiss wave properties shows that exohiss waves prefer to occur over 3Date: 06/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026359 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026359
More Details
Authors: Tyler E., Breneman A., Cattell C., Wygant J, Thaller S., et al.
Title: Statistical occurrence and distribution of high amplitude whistler-mode waves in the outer radiation belt
Abstract: We present the first statistical analysis with continuous data coverage and non‐averaged amplitudes of the prevalence and distribution of high‐amplitude (> 5 mV/m) whistler‐mode waves in the outer radiation belt using 5 years of Van Allen Probes data. These waves are most common above L=3.5 and between MLT of 0‐7 where they are present 1‐4% of the time. During high geomagnetic activity, high‐amplitude whistler‐mode wave occurrence rises above 30% in some regions. During these active times the plasmasphere erodes to lower L and high‐amplitude waves are observed at all L outside of it, with the highest occurrence at low L (3.5‐4) in the pre‐dawn sector. These results have important implications for modeling radiation belt particle interactions with chorus, as large‐amp. . .
Date: 02/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL082292 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082292
More Details
Authors: Zhang Wenxun, Ni Binbin, Huang He, Summers Danny, Fu Song, et al.
Title: Statistical Properties of Hiss in Plasmaspheric Plumes and Associated Scattering Losses of Radiation Belt Electrons
Abstract: Whistler mode hiss acts as an important loss mechanism contributing to the radiation belt electron dynamics inside the plasmasphere and plasmaspheric plumes. Based on Van Allen Probes observations from September 2012 to December 2015, we conduct a detailed analysis of hiss properties in plasmaspheric plumes and illustrate that corresponding to the highest occurrence probability of plumes at L = 5.0–6.0 and MLT = 18–21, hiss emissions occur concurrently with a rate of >~80%. Plume hiss can efficiently scatter ~10‐ to 100‐keV electrons at rates up to ~10−4 s−1 near the loss cone, and the resultant electron loss timescales vary largely with energy, that is, from less than an hour for tens of kiloelectron volt electrons to several days for hundreds of kiloelectron volt electrons an. . .
Date: 05/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL081863 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL081863
More Details
Authors: Jun C.-W., Yue C., Bortnik J, Lyons L R, Nishimura Y., et al.
Title: A Statistical Study of EMIC Waves Associated With and Without Energetic Particle Injection From the Magnetotail
Abstract: To understand the relationship between generation of electromagnetic ion cyclotron (EMIC) waves and energetic particle injections, we performed a statistical study of EMIC waves associated with and without injections based on the Van Allen Probes (Radiation Belt Storm Probes) and Geostationary Operational Environmental Satellite (GOES; GOES‐13 and GOES‐15) observations. Using 47 months of observations, we identified wave events seen by the Van Allen Probes relative to the plasmapause and to energetic particle injections seen by GOES‐13 and GOES‐15 on the nightside. We separated the events into four categories: EMIC waves with (without) injections inside (outside) the plasmasphere. We found that He+ EMIC waves have higher occurrence rate inside the plasmasphere, while H+ EMIC waves . . .
Date: 01/2019 Publisher: Journal of Geophysical Research: Space Physics Pages: 433 - 450 DOI: 10.1029/2018JA025886 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025886
More Details
Authors: Mitani K., Seki K., Keika K, Gkioulidou M., Lanzerotti L J, et al.
Title: Statistical Study of Selective Oxygen Increase in High‐Energy Ring Current Ions During Magnetic Storms
Abstract: Ion transport from the plasma sheet to the ring current is the main cause of the development of the ring current. Energetic (>150 keV) ring current ions are known to be transported diffusively in several days. A recent study suggested that energetic oxygen ions are transported closer to the Earth than protons due to the diffusive transport caused by a combination of the drift and drift‐bounce resonances with Pc 3–5 ultralow frequency waves during the 24 April 2013 magnetic storm. To understand the occurrence conditions of such selective oxygen increase (SOI), we investigate the phase space densities (PSDs) between protons and oxygen ions with the first adiabatic invariants (μ) of 0.1–2.0 keV/nT measured by the Radiation Belt Storm Probes Ion Composition Experiment instrument on the . . .
Date: 04/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026168 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026168
More Details
Authors: Wang Hui, He Yangfan, ühr Hermann, Kistler Lynn, Saikin Anthony, et al.
Title: Storm Time EMIC Waves Observed by Swarm and Van Allen Probe Satellites
Abstract: The temporal and spatial evolution of electromagnetic ion cyclotron (EMIC) waves during the magnetic storm of 21–29 June 2015 was investigated using high‐resolution magnetic field observations from Swarm constellation in the ionosphere and Van Allen Probes in the magnetosphere. Magnetospheric EMIC waves had a maximum occurrence frequency in the afternoon sector and shifted equatorward during the expansion phase and poleward during the recovery phase. However, ionospheric waves in subauroral regions occurred more frequently in the nighttime than during the day and exhibited less obvious latitudinal movements. During the main phase, dayside EMIC waves occurred in both the ionosphere and magnetosphere in response to the dramatic increase in the solar wind dynamic pressure. Waves were abse. . .
Date: 01/2019 Publisher: Journal of Geophysical Research: Space Physics Pages: 293 - 312 DOI: 10.1029/2018JA026299 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026299
More Details
Authors: Agapitov O., Mourenas D., Artemyev A., Hospodarsky G., and Bonnell J.W.
Title: Timescales for electron quasi‐linear diffusion by lower‐band chorus waves: the effects of ω pe / Ω ce dependence on geomagnetic activity
Abstract: Electron scattering by chorus waves is an important mechanism that can lead to fast electron acceleration and loss in the outer radiation belt. Making use of Van Allen Probes measurements, we present the first statistical survey of megaelectron volt electron pitch angle and energy quasi‐linear diffusion rates by chorus waves as a function of L‐shell, local time, and AE index, taking into account the local electron plasma frequency to gyrofrequency ratio ωpe/Ωce, chorus wave frequency, and resonance wave amplitude. We demonstrate that during disturbed periods, ωpe/Ωce strongly decreases in the night sector, leading to a faster electron loss but also a much faster electron energization in two distinct regions just above the plasmapause and at L ~ 3.5–5.5. Spatiotemporal variations . . .
Date: 05/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083446 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083446
More Details
Authors: Zhu Hui, Liu Xu, and Chen Lunjin
Title: Triggered Plasmaspheric Hiss: Rising Tone Structures
Abstract: In this study, a rare hiss event observed by Van Allen Probe is reported and the possible generation is investigated based on wave and plasma measurements. The results suggest that the normal hiss (from 0.05fce to 0.5fce) with dominantly equatorward Poynting fluxes is locally generated by plasma sheet electrons via cyclotron instability. The low‐frequency band (from 30 Hz to 0.05fce) with a mixture of equatorward and poleward Poynting fluxes is probably due to multiple reflections inside the plasmasphere. Such difference in the two bands is confirmed by the calculation of minimum energy of resonant electrons and local growth rate. Moreover, the analysis on the fine structures of normal hiss waves shows that besides the expected incoherent structure (below 1 kHz), several rising tone elem. . .
Date: 05/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL082688 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082688
More Details
Authors: Teng S., Tao X., and Li W
Title: Typical Characteristics of Whistler Mode Waves Categorized by Their Spectral Properties Using Van Allen Probes Observations
Abstract: Properties of banded, no‐gap, lower band only, and upper band only whistler mode waves (0.1–0.8fce) outside the plasmasphere are investigated using Van Allen Probes data. Our analysis shows that no‐gap whistler waves have higher occurrence rate at morning side and dayside, while banded and lower band only waves have higher occurrence rate between midnight and dawn. We also find that the occurrence rate of no‐gap whistler waves peaks at magnetic latitude |MLAT|∼8–10°, while banded waves have higher occurrence rate near the equator for urn:x-wiley:grl:media:grl58818:grl58818-math-0001°. The wave normal angle distributions of these four groups of waves are similar to previous results. The distinct local time and latitudinal distribution of no‐gap and banded whistler mode waves. . .
Date: 03/2019 Publisher: Geophysical Research Letters Pages: 3607 - 3614 DOI: 10.1029/2019GL082161 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082161
More Details
Authors: Hartley D. P., Kletzing C A, Chen L, Horne R B, and ík O.
Title: Van Allen Probes observations of chorus wave vector orientations: Implications for the chorus-to-hiss mechanism
Abstract: Using observations from the Van Allen Probes EMFISIS instrument, coupled with ray tracing simulations, we determine the fraction of chorus wave power with the conditions required to access the plasmasphere and evolve into plasmaspheric hiss. It is found that only an extremely small fraction of chorus occurs with the required wave vector orientation, carrying only a small fraction of the total chorus wave power. The exception is on the edge of plasmaspheric plumes, where strong azimuthal density gradients are present. In these cases, up to 94% of chorus wave power exists with the conditions required to access the plasmasphere. As such, we conclude that strong azimuthal density gradients are actually a requirement if a significant fraction of chorus wave power is to enter the plasmasphere an. . .
Date: 02/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL082111 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082111
More Details
Authors: Pandya Megha, Veenadhari B., Ebihara Y., Kanekal S.G., and Baker D.N.
Title: Variation of Radiation belt electron flux during CME and CIR driven geomagnetic storms: Van Allen Probes observations
Abstract: Relativistic electron flux responses in the inner magnetosphere are investigated for 28 magnetic storms driven by Corotating Interaction Region (CIR) and 27 magnetic storms driven by Coronal Mass Ejection (CME), using data from the Relativistic Electron‐Proton Telescope (REPT) instrument on board Van‐Allen Probes from Oct‐2012 to May‐2017. In this present study we analyze the role of CIRs and CMEs in electron dynamics by sorting the electron fluxes in terms of averaged solar wind parameters, L‐values, and energies. The major outcomes from our study are: (i) At L = 3 and E = 3.4 MeV, for >70% cases the electron flux remains stable, while at L = 5, for ~82% cases it changes with the geomagnetic conditions. (ii) At L = 5, ~53% of the CIR storms and 30% of the CME storms show electro. . .
Date: 07/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026771 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026771
More Details

Pages