Biblio

Found 879 results
2014
Authors: Finnigan Jeremiah
Title: A scripting framework for automated flight SW testing: Van Allen Probes lessons learned
Abstract: This paper summarizes the lessons learned from implementing and utilizing an automated flight software test framework for the Van Allen Probes mission. This includes a recommended list of features/characteristics that a test framework should support. This paper also presents two test scripting design patterns that are useful for constructing an automated regression test suite. These design patterns are intended for non-object-oriented scripting environments - which is typical of space mission ground systems. A process flow is described for developing and utilizing an automated test scripting framework for future missions based upon the design patterns presented herein.
Date: 03/2014 Publisher: IEEE DOI: 10.1109/AERO.2014.6836164 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6836164
More Details
Authors: Firpi Alexer H., Oxenrider Jason R., Ramachandran Vignesh R., Mitchell Herbert J., Tzeng Nigel H., et al.
Title: Signature modeling for LWIR spectrometer
Abstract: Hyperspectral longwave infrared (LWIR) is used for a variety of targets such as gases and solids with the advantage of day or night data collections. A longwave infrared system must have the ability to convert the radiance data it measures to emissivity prior to running a detection algorithm, commonly called a temperature-emissivity separation (TES) algorithm. Key parts of this TES algorithm are accounting for the reflected down-welling radiation from the atmosphere, upwelling background radiance removal, and most importantly determining the temperature of the material. Accounting for these environmental conditions allows for the data to be processed in emissivity to be used in the detection algorithm. The processed data also allows a baseline to determine where key features exist in the s. . .
Date: 03/2014 Publisher: IEEE DOI: 10.1109/AERO.2014.6836439 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6836439
More Details
Authors: Hudson M K, Baker D N, Goldstein J, Kress B T, Paral J., et al.
Title: Simulated magnetopause losses and Van Allen Probe flux dropouts
Abstract: Three radiation belt flux dropout events seen by the Relativistic Electron Proton Telescope soon after launch of the Van Allen Probes in 2012 (Baker et al., 2013a) have been simulated using the Lyon-Fedder-Mobarry MHD code coupled to the Rice Convection Model, driven by measured upstream solar wind parameters. MHD results show inward motion of the magnetopause for each event, along with enhanced ULF wave power affecting radial transport. Test particle simulations of electron response on 8 October, prior to the strong flux enhancement on 9 October, provide evidence for loss due to magnetopause shadowing, both in energy and pitch angle dependence. Severe plasmapause erosion occurred during ~ 14 h of strongly southward interplanetary magnetic field Bz beginning 8 October coincident with. . .
Date: 02/2014 Publisher: Geophysical Research Letters Pages: 1113 - 1118 DOI: 10.1002/2014GL059222 Available at: http://doi.wiley.com/10.1002/2014GL059222
More Details
Authors: Glauert Sarah A, Horne Richard B, and Meredith Nigel P
Title: Simulating the Earth's radiation belts: Internal acceleration and continuous losses to the magnetopause
Abstract: In the Earth's radiation belts the flux of relativistic electrons is highly variable, sometimes changing by orders of magnitude within a few hours. Since energetic electrons can damage satellites it is important to understand the processes driving these changes and, ultimately, to develop forecasts of the energetic electron population. One approach is to use three-dimensional diffusion models, based on a Fokker-Planck equation. Here we describe a model where the phase-space density is set to zero at the outer L∗ boundary, simulating losses to the magnetopause, using recently published chorus diffusion coefficients for 1.5≤L∗≤10. The value of the phase-space density on the minimum-energy boundary is determined from a recently published, solar wind-dependent, statistical model. Our s. . .
Date: 09/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 7444 - 7463 DOI: 10.1002/jgra.v119.910.1002/2014JA020092 Available at: http://doi.wiley.com/10.1002/jgra.v119.9http://doi.wiley.com/10.1002/2014JA020092
More Details
Authors: Pakhotin I. P., Drozdov A. Y., Shprits Y Y, Boynton R. J., Subbotin D. A., et al.
Title: Simulation of high-energy radiation belt electron fluxes using NARMAX-VERB coupled codes
Abstract: This study presents a fusion of data-driven and physics-driven methodologies of energetic electron flux forecasting in the outer radiation belt. Data-driven NARMAX (Nonlinear AutoRegressive Moving Averages with eXogenous inputs) model predictions for geosynchronous orbit fluxes have been used as an outer boundary condition to drive the physics-based Versatile Electron Radiation Belt (VERB) code, to simulate energetic electron fluxes in the outer radiation belt environment. The coupled system has been tested for three extended time periods totalling several weeks of observations. The time periods involved periods of quiet, moderate, and strong geomagnetic activity and captured a range of dynamics typical of the radiation belts. The model has successfully simulated energetic electron fluxes . . .
Date: 10/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020238 Available at: http://doi.wiley.com/10.1002/2014JA020238
More Details
Authors: Goldstein J, De Pascuale S., Kletzing C., Kurth W., Genestreti K. J., et al.
Title: Simulation of Van Allen Probes Plasmapause Encounters
Abstract: We use an E × B-driven plasmapause test particle (PTP) simulation to provide global contextual information for in situ measurements by the Van Allen Probes (RBSP) during 15–20 January 2013. During 120 h of simulation time beginning on 15 January, geomagnetic activity produced three plumes. The third and largest simulated plume formed during enhanced convection on 17 January, and survived as a rotating, wrapped, residual plume for tens of hours. To validate the simulation, we compare its output with RBSP data. Virtual RBSP satellites recorded 28 virtual plasmapause encounters during 15–19 January. For 26 of 28 (92%) virtual crossings, there were corresponding actual RBSP encounters with plasmapause density gradients. The mean difference in encounter time between model and data is. . .
Date: 09/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020252 Available at: http://doi.wiley.com/10.1002/2014JA020252
More Details
Authors: Jordanova V K, Yu Y., Niehof J T, Skoug R M, Reeves G D, et al.
Title: Simulations of inner magnetosphere dynamics with an expanded RAM-SCB model and comparisons with Van Allen Probes observations
Abstract: Simulations from our newly expanded ring current-atmosphere interactions model with self-consistent magnetic field (RAM-SCB), now valid out to 9 RE, are compared for the first time with Van Allen Probes observations. The expanded model reproduces the storm time ring current buildup due to the increased convection and inflow of plasma from the magnetotail. It matches Magnetic Electron Ion Spectrometer (MagEIS) observations of the trapped high-energy (>50 keV) ion flux; however, it underestimates the low-energy (<10 keV) Helium, Oxygen, Proton, and Electron (HOPE) observations. The dispersed injections of ring current ions observed with the Energetic particle, Composition, and Thermal plasma (ECT) suite at high (>20 keV) energy are better reproduced using a high-resolution convection model. . . .
Date: 04/2014 Publisher: Geophysical Research Letters Pages: 2687 - 2694 DOI: 10.1002/2014GL059533 Available at: http://doi.wiley.com/10.1002/2014GL059533
More Details
Authors: Reid Mark, and Ottman Geffrey
Title: Software controlled memory scrubbing for the Van Allen Probes Solid State Recorder (SSR) memory
Abstract: The Van Allen Probes mission which was designed and built by the Johns Hopkins University, Applied Physics Laboratory (APL) is also being operated by the APL mission operations team in Laurel, Maryland. The two Van Allen Probes spacecraft have been successfully collecting data on orbit since they were launched on August 30, 2012. These twin probes are providing unprecedented insight into the physical dynamics of the Earth's radiation belts and are giving scientists the data they need to make predictions of changes in this critical region of space, by sampling the harsh radiation belt environment where major space weather activity occurs and many spacecraft operate.[1] Shortly after launch, radiation induced anomalies were reported on both spacecraft and investigated by the hardware and sof. . .
Date: 03/2014 Publisher: IEEE DOI: 10.1109/AERO.2014.6836406 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6836406
More Details
Authors: Wang Chih-Ping, Xing Xiaoyan, Nakamura T. K. M., Lyons Larry R., and Angelopoulos Vassilis
Title: Source and structure of bursty hot electron enhancements in the tail magnetosheath: Simultaneous two-probe observation by ARTEMIS
Abstract: Bursty enhancements of hot electrons (≳0.5 keV) with duration of minutes sometimes occur in the tail magnetosheath. In this study we used the unique simultaneous measurements from the two Acceleration Reconnection Turbulence and Electrodynamics of Moon's Interaction with the Sun probes to investigate the likely sources, spatial structures, and responsible processes for these hot electron enhancements. The enhancements can be seen at any distance across the magnetosheath, but those closer to the magnetopause are more often accompanied by magnetosheath density and flow magnitudes changing to more magnetosphere-like values. From simultaneous measurements with the two probes being on either side of magnetopause or both in the magnetosheath, it is evident that these hot electrons come from . . .
Date: 12/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020603 Available at: http://doi.wiley.com/10.1002/2014JA020603
More Details
Authors: Turner Drew L
Title: Space science: Near-Earth space shows its stripes
Abstract: Using some of the first scientific satellites put into orbit during the late 1950s, teams led by physicists James Van Allen in the United States and Sergei Vernov in the Soviet Union independently reported1, 2 on defined regions of radiation in near-Earth space. These regions came to be known as Earth's radiation belts, and they represent the first major scientific discovery of the space age. However, despite decades of study, many questions in radiation-belt physics remain unanswered, mostly concerning the nature of the inner and outer belts, which are populated by electrons moving at near the speed of light. As society becomes ever more dependent on satellite-based technology, it is increasingly important to understand the variability in the radiation belts, because the highest-energy . . .
Date: 03/2014 Publisher: Nature Pages: 308 - 309 DOI: 10.1038/507308a Available at: http://www.nature.com/doifinder/10.1038/507308a
More Details
Authors: Lesley Mellinee
Title: “Spacecraft Reveals Recent Geological Activity on the Moon”
Abstract: Through a content analysis of 200 “tweets,” this study was an exploration into the distinct features of text posted to NASA's Twitter site and the potential for these posts to serve as more engaging scientific text than traditional textbooks for adolescents. Results of the content analysis indicated the tweets and linked texts on the NASA Twitter site were constructed primarily as a form of “adapted primary literature” where science texts created by scientists for other scientists are presented in a slightly modified format for the general public. Further, the content analysis revealed the majority of text posted was designed to cultivate scientific knowledge for novices. Findings of the content analysis are presented and implications for teaching scientific literacies to adolescen. . .
Date: 02/2014 Publisher: Journal of Adolescent & Adult Literacy Pages: 377 - 385 DOI: 10.1002/jaal.2014.57.issue-510.1002/jaal.258 Available at: http://doi.wiley.com/10.1002/jaal.2014.57.issue-5http://doi.wiley.com/10.1002/jaal.258
More Details
Authors: Mann I. R., Usanova M. E., Murphy K., Robertson M. T., Milling D. K., et al.
Title: Spatial localization and ducting of EMIC waves: Van Allen Probes and ground-based observations
Abstract: On 11 October 2012, during the recovery phase of a moderate geomagnetic storm, an extended interval (> 18 h) of continuous electromagnetic ion cyclotron (EMIC) waves was observed by Canadian Array for Real-time Investigations of Magnetic Activity and Solar-Terrestrial Environment Program induction coil magnetometers in North America. At around 14:15 UT, both Van Allen Probes B and A (65° magnetic longitude apart) in conjunction with the ground array observed very narrow (ΔL ~ 0.1–0.4) left-hand polarized EMIC emission confined to regions of mass density gradients at the outer edge of the plasmasphere at L ~ 4. EMIC waves were seen with complex polarization patterns on the ground, in good agreement with model results from Woodroffe and Lysak (2012) and consistent with Earth's . . .
Date: 02/2014 Publisher: Geophysical Research Letters Pages: 785 - 792 DOI: 10.1002/2013GL058581 Available at: http://doi.wiley.com/10.1002/2013GL058581
More Details
Authors: Berman Simmie, Cheng Weilun, Borowski Heather, and Persons David
Title: Spin stabilization design and testing of the Van Allen Probes
Abstract: This paper describes the design decisions taken and the mass properties tracking and testing flow chosen for the Van Allen Probes spacecraft and their deployable systems to achieve the coning angle requirements. Topics include a list of major requirements, a brief description of the error budget, a description of the tracking process of the spacecraft mass properties prior to test, a description of the spin balance and mass properties testing of the spacecraft core and deployable systems, and a presentation of the final mass properties and coning angle calculations of the fully deployed observatories. Launched August 30, 2012, the observed on-orbit, fully deployed configuration coning angles met the requirements, validating the spin balance and mass properties tracking, testing, and calcul. . .
Date: 03/2014 Publisher: IEEE DOI: 10.1109/AERO.2014.6836234 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6836234
More Details
Authors: Boynton R. J., Balikhin M. A., and Mourenas D.
Title: Statistical analysis of electron lifetimes at GEO: Comparisons with chorus-driven losses
Abstract: The population of electrons in the Earth's outer radiation belt increases when the magnetosphere is exposed to high-speed streams of solar wind, coronal mass ejections, magnetic clouds, or other disturbances. After this increase, the number of electrons decays back to approximately the initial population. This study statistically analyzes the lifetimes of the electron at Geostationary Earth Orbit (GEO) from Los Alamos National Laboratory electron flux data. The decay rate of the electron fluxes are calculated for 14 energies ranging from 24 keV to 3.5 MeV to identify a relationship between the lifetime and energy of the electrons. The statistical data show that electron lifetimes increase with energy. Also, the statistical results show a good agreement up to ∼1 MeV with an analytical mod. . .
Date: 08/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 6356 - 6366 DOI: 10.1002/2014JA019920 Available at: http://doi.wiley.com/10.1002/2014JA019920
More Details
Authors: Spasojevic M.
Title: Statistical analysis of ground-based chorus observations during geomagnetic storms
Abstract: Chorus observations from two ground-based, Antarctic receiving stations are analyzed for a set of geomagnetic storms from 2000 to 2010. Superposed epoch analysis is performed together with statistical hypothesis testing to determine whether the observed quantities (geomagnetic indices, outer belt energetic electron fluxes, and chorus properties) are statistically significantly different as functions of storm phase, storm size, and storm type. Waves generated in the outer dayside magnetosphere and observed on the ground at South Pole Station are suppressed during main phase and are statistically unchanged from random intervals during recovery phase. Waves generated in the inner magnetosphere and observed on the ground at Palmer Station are significantly enhanced during storm main phase and . . .
Date: 10/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 8299 - 8317 DOI: 10.1002/jgra.v119.1010.1002/2014JA019975 Available at: http://doi.wiley.com/10.1002/jgra.v119.10http://doi.wiley.com/10.1002/2014JA019975
More Details
Authors: Santolik O, Hospodarsky G B, Kurth W S, Averkamp T. F., Kletzing C A, et al.
Title: Statistical properties of wave vector directions of whistler-mode waves in the radiation belts based on measurements of the Van Allen probes and Cluster missions
Abstract: Wave-particle interactions in the Earth's Van Allen radiation belts are known to be an efficient process of the exchange of energy between different particle populations, including the energetic radiation belt particles. The whistler mode waves, especially chorus, can control the radiation belt dynamics via linear or nonlinear interactions with both the energetic radiation belt electrons and lower energy electron populations. Wave vector directions are a very important parameter of these wave-particle interactions. We use measurements of whistlermode waves by the WAVES instrument from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) onboard the Van Allen Probes spacecraft covering the equatorial region of the Earth's magnetosphere in all MLT sectors, and a . . .
Date: 08/2014 Publisher: IEEE DOI: 10.1109/URSIGASS.2014.6929880 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6929880
More Details
Authors: Gao X., Li W, Thorne R M, Bortnik J, Angelopoulos V, et al.
Title: Statistical results describing the bandwidth and coherence coefficient of whistler mode waves using THEMIS waveform data
Abstract: The bandwidths and coherence coefficients of lower band whistler mode waves are analyzed using Time History of Events and Macroscale Interactions during Substorms (THEMIS) waveform data for rising tones, falling tones, and hiss-like emissions separately. We also evaluate their dependences on the spatial location, electron density, the ratio of plasma frequency to local electron gyrofrequency (fpe/fce), and the wave amplitude. Our results show that the bandwidth normalized by the local electron gyrofrequency (fce) of rising and falling tones is very narrow (~0.01 fce), smaller than that of the hiss-like emissions (~0.025 fce). Meanwhile, the normalized bandwidth of discrete emissions gradually decreases with increasing wave amplitude, whereas that of hiss-like emissions increases slowly. Th. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020158 Available at: http://doi.wiley.com/10.1002/2014JA020158
More Details
Authors: Foster J. C., Erickson P. J., Coster A. J., Thaller S., Tao J., et al.
Title: Storm time observations of plasmasphere erosion flux in the magnetosphere and ionosphere
Abstract: Plasmasphere erosion carries cold dense plasma of ionospheric origin in a storm-enhanced density plume extending from dusk toward and through the noontime cusp and dayside magnetopause and back across polar latitudes in a polar tongue of ionization. We examine dusk sector (20 MLT) plasmasphere erosion during the 17 March 2013 storm (Dst ~ −130 nT) using simultaneous, magnetically aligned direct sunward ion flux observations at high altitude by Van Allen Probes RBSP-A (at ~3.0 Re) and at ionospheric heights (~840 km) by DMSP F-18. Plasma erosion occurs at both high and low altitudes where the subauroral polarization stream flow overlaps the outer plasmasphere. At ~20 UT, RBSP-A observed ~1.2E12 m−2 s−1 erosion flux, while DMSP F-18 observed ~2E13 m−2 s−1 sunward flux. We. . .
Date: 02/2014 Publisher: Geophysical Research Letters Pages: 762 - 768 DOI: 10.1002/2013GL059124 Available at: http://doi.wiley.com/10.1002/2013GL059124
More Details
Authors: Makela Jonathan J., Harding Brian J., Meriwether John W., Mesquita Rafael, Sanders Samuel, et al.
Title: Storm time response of the mid-latitude thermosphere: Observations from a network of Fabry-Perot interferometers
Abstract: Observations of thermospheric neutral winds and temperatures obtained during a geomagnetic storm on 2 October 2013 from a network of six Fabry-Perot interferometers (FPIs) deployed in the midwest United States are presented. Coincident with the commencement of the storm, the apparent horizontal wind is observed to surge westward and southward (towards the equator). Simultaneous to this surge in the apparent horizontal winds, an apparent downward wind of approximately 100 m/s lasting for 6 hours is observed. The apparent neutral temperature is observed to increase by approximately 400 K over all of the sites. Observations from an all-sky imaging system operated at the Millstone Hill observatory indicate the presence of a stable auroral red (SAR) arc and diffuse red aurora during this . . .
Date: 08/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA019832 Available at: http://doi.wiley.com/10.1002/2014JA019832
More Details
Authors: Menietti J. D., Averkamp T. F., Groene J. B., Horne R B, Shprits Y Y, et al.
Title: Survey analysis of chorus intensity at Saturn
Abstract: In order to conduct theoretical studies or modeling of pitch angle scattering of electrons by whistler mode chorus emission at Saturn, a knowledge of chorus occurrence and magnetic intensity levels, PB, as well as the distribution of PB relative to frequency and spatial parameters is essential. In this paper an extensive survey of whistler mode magnetic intensity levels at Saturn is carried out, and Gaussian fits of PB are performed. We fit the spectrum of wave magnetic intensity between the lower hybrid frequency and fceq/2 and for frequencies in the interval fceq/2 < f < 0.9 fceq, where fceq is the cyclotron frequency mapped to the equator. Saturn chorus is observed over most local times, but is dominant on the nightside in the range of 4.5 < L <7.5, with minimum power at t. . .
Date: 10/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 8415 - 8425 DOI: 10.1002/jgra.v119.1010.1002/2014JA020523 Available at: http://doi.wiley.com/10.1002/jgra.v119.10http://doi.wiley.com/10.1002/2014JA020523
More Details
Authors: Sergeev V. A., Nikolaev A. V., Tsyganenko N A, Angelopoulos V, Runov A. V., et al.
Title: Testing a two-loop pattern of the substorm current wedge (SCW2L)
Abstract: Recent quantitative testing of the classical (region 1 sense) substorm current wedge (SCI) model revealed systematic discrepancies between the observed and predicted amplitudes, which suggested us to include additional region 2 sense currents (R2 loop) earthward of the dipolarized region (SCW2L model). Here we discuss alternative circuit geometries of the 3-D substorm current system and interpret observations of the magnetic field dipolarizations made between 6.6RE and 11RE, to quantitatively investigate the SCW2L model parameters. During two cases of a dipole-like magnetotail configuration, the dipolarization/injection front fortuitously stopped at r ~ 9RE for the entire duration of ~ 30 min long SCW-related dipolarization within a unique, radially distributed multispacecraft constellat. . .
Date: 02/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 947 - 963 DOI: 10.1002/2013JA019629 Available at: http://doi.wiley.com/10.1002/2013JA019629
More Details
Authors: Califf S., Li X, Blum L., Jaynes A., Schiller Q., et al.
Title: THEMIS measurements of quasi-static electric fields in the inner magnetosphere
Abstract: We use four years of THEMIS double-probe measurements to offer, for the first time, a complete picture of the dawn-dusk electric field covering all local times and radial distances in the inner magnetosphere based on in situ equatorial observations. This study is motivated by the results from the CRRES mission, which revealed a local maximum in the electric field developing near Earth during storm times, rather than the expected enhancement at higher L shells that is shielded near Earth as suggested by the Volland-Stern model. The CRRES observations were limited to the dusk side, while THEMIS provides complete local time coverage. We show strong agreement with the CRRES results on the dusk side, with a local maximum near L =4 for moderate levels of geomagnetic activity and evidence of stro. . .
Date: 10/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020360 Available at: http://doi.wiley.com/10.1002/2014JA020360
More Details
Authors: Artemyev A. V., Agapitov O. V., Mozer F, and Krasnoselskikh V.
Title: Thermal electron acceleration by localized bursts of electric field in the radiation belts
Abstract: In this paper we investigate the resonant interaction of thermal ~10−100 eV electrons with a burst of electrostatic field that results in electron acceleration to kilovolt energies. This single burst contains a large parallel electric field of one sign and a much smaller, longer lasting parallel field of the opposite sign. The Van Allen Probe spacecraft often observes clusters of spatially localized bursts in the Earth's outer radiation belts. These structures propagate mostly away from thegeomagnetic equator and share properties of soliton-like nonlinear electron-acoustic waves: a velocity of propagation is about the thermal velocity of cold electrons (~3000−10000 km/s), and a spatial scale of electric field localization alongthe field lines is about the Debye radius of hot electrons . . .
Date: 08/2014 Publisher: Geophysical Research Letters DOI: 10.1002/2014GL061248 Available at: http://doi.wiley.com/10.1002/2014GL061248
More Details
Authors: Zheng Liheng, Chan Anthony A, Albert Jay M, Elkington Scot R, Koller Josef, et al.
Title: Three-dimensional stochastic modeling of radiation belts in adiabatic invariant coordinates
Abstract: A 3-D model for solving the radiation belt diffusion equation in adiabatic invariant coordinates has been developed and tested. The model, named Radbelt Electron Model, obtains a probabilistic solution by solving a set of Itô stochastic differential equations that are mathematically equivalent to the diffusion equation. This method is capable of solving diffusion equations with a full 3-D diffusion tensor, including the radial-local cross diffusion components. The correct form of the boundary condition at equatorial pitch angle α0=90° is also derived. The model is applied to a simulation of the October 2002 storm event. At α0 near 90°, our results are quantitatively consistent with GPS observations of phase space density (PSD) increases, suggesting dominance of radial diffusion; at sm. . .
Date: 09/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 7615 - 7635 DOI: 10.1002/jgra.v119.910.1002/2014JA020127 Available at: http://doi.wiley.com/10.1002/jgra.v119.9http://doi.wiley.com/10.1002/2014JA020127
More Details
Authors: Osmane A., and Pulkkinen T. I.
Title: On the threshold energization of radiation belt electrons by double layers
Abstract: Using a Hamiltonian approach, we quantify the energization threshold of electrons interacting with radiation belts' double layers discovered by Mozer et al. (2013). We find that double layers with electric field amplitude E0 ranging between 10 and 100 mV/m and spatial scales of the order of few Debye lengths are very efficient in energizing electrons with initial velocities v∥ ≤ vth to 1 keV levels but are unable to energize electrons with E ≥ 100 keV. Our results indicate that the localized electric field associated with the double layers are unlikely to generate a seed population of 100 keV necessary for a plethora of relativistic acceleration mechanisms and additional transport to higher energetic levels.
Date: 10/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020236 Available at: http://doi.wiley.com/10.1002/2014JA020236
More Details
Authors: Ma Q, Li W, Chen L, Thorne R M, Kletzing C A, et al.
Title: The trapping of equatorial magnetosonic waves in the Earth's outer plasmasphere
Abstract: We investigate the excitation and propagation of equatorial magnetosonic waves observed by the Van Allen Probes and describe evidence for a trapping mechanism for magnetosonic waves in the Earth's plasmasphere. Intense equatorial magnetosonic waves were observed inside the plasmasphere in association with a pronounced proton ring distribution, which provides free energy for wave excitation. Instability analysis along the inbound orbit demonstrates that broadband magnetosonic waves can be excited over a localized spatial region near the plasmapause. The waves can subsequently propagate into the inner plasmasphere and remain trapped over a limited radial extent, consistent with the predictions of near-perpendicular propagation. By performing a similar analysis on another observed magnetosoni. . .
Date: 09/2014 Publisher: Geophysical Research Letters Pages: 6307 - 6313 DOI: 10.1002/2014GL061414 Available at: http://doi.wiley.com/10.1002/2014GL061414
More Details
Authors: Betz Eric O.
Title: Trapping waves in Earth's plasmasphere
Abstract: Earth's magnetic field traps donut-shaped bands of radiation in a belt around the planet that react to solar eruptions by growing and shrinking. The Van Allen belts consist of two rings filled with particles from the solar wind and cosmic rays. Within the outer ring of the Van Allen belt sits the plasmasphere, which is the innermost part of the planet's magnetic field and home to low-energy charged particles.
Date: 12/2014 Publisher: Eos, Transactions American Geophysical Union Pages: 472 - 472 DOI: 10.1002/2014EO490016 Available at: http://doi.wiley.com/10.1002/eost.v95.49http://doi.wiley.com/10.1002/2014EO490016
More Details
Authors: Murphy Kyle R., Mann Ian R., and Ozeke Louis G.
Title: A ULF wave driver of ring current energization
Abstract: ULF wave radial diffusion plays an important role in the transport of energetic electrons in the outer radiation belt, yet similar ring current transport is seldom considered even though ions satisfy a nearly identical drift resonance condition albeit without the relativistic correction. By examining the correlation between ULF wave power and the response of the ring current, characterized by Dst, we demonstrate a definite correlation between ULF wave power and Dst. Significantly, the lagged correlation peaks such that ULF waves precede the response of the ring current and Dst. We suggest that this correlation is the result of enhanced radial transport and energization of ring current ions through drift resonance and ULF wave radial diffusion of ring current ions. An analysis and compariso. . .
Date: 10/2014 Publisher: Geophysical Research Letters Pages: 6595 - 6602 DOI: 10.1002/grl.v41.1910.1002/2014GL061253 Available at: http://doi.wiley.com/10.1002/grl.v41.19http://doi.wiley.com/10.1002/2014GL061253
More Details
Authors: Yang Xiao C., Zhu Guang W., Zhang Xiao X., Sun Yue Q., Liang Jin B., et al.
Title: An unusual long-lived relativistic electron enhancement event excited by sequential CMEs
Abstract: An unusual long-lived intense relativistic electron enhancement event from July to August 2004 is examined using data from Fengyun-1, POES, GOES, ACE, the Cluster Mission and geomagnetic indices. During the initial 6 days of this event, the observed fluxes in the outer zone enhanced continuously and their maximum increased from 2.1 × 102 cm-2·sr-1·s-1 to 3.5 × 104 cm-2·sr-1·s-1, the region of enhanced fluxes extended from L = 3.5-6.5 to L = 2.5-6.5, and the flux peak location shifted inward from L ~ 4.2 to L ~ 3.3. During the following 7 days, without any locational movement, the flux peak increased slowly and exceeded the pre-storm fluxes by about 4 orders of magnitude. Subsequently, the decay rate of relativistic electrons is so slow that the peak re. . .
Date: 10/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA019797 Available at: http://doi.wiley.com/10.1002/2014JA019797
More Details
Authors: Boardsen S. A., Hospodarsky G B, Kletzing C A, Pfaff R. F., Kurth W S, et al.
Title: Van Allen Probe Observations of Periodic Rising Frequencies of the Fast Magnetosonic Mode
Abstract: Near simultaneous periodic dispersive features of fast magnetosonic mode emissions are observed by both Van Allen Probes spacecraft while separated in magnetic local time by ~5 hours: Probe A at 15 and Probe B at 9–11 hours. Both spacecraft see similar frequency features, characterized by a periodic repetition at ~180 s. Each repetition is characterized by a rising frequency. Since no modulation is observed in the proton shell distribution, the plasma density, or in the background magnetic field at either spacecraft we conclude that these waves are not generated near the spacecraft but external to both spacecraft locations. Probe A while outside the plasmapause sees the start of each repetition ~40 s before probe B while deep inside the plasmasphere. We can qualitatively reproduce . . .
Date: 12/2014 Publisher: Geophysical Research Letters DOI: 10.1002/2014GL062020 Available at: http://doi.wiley.com/10.1002/2014GL062020
More Details
Authors: Fennell J. F., Roeder J. L., Kurth W S, Henderson M G, Larsen B A, et al.
Title: Van Allen Probes observations of direct wave-particle interactions
Abstract: Quasiperiodic increases, or “bursts,” of 17–26 keV electron fluxes in conjunction with chorus wave bursts were observed following a plasma injection on 13 January 2013. The pitch angle distributions changed during the burst events, evolving from sinN(α) to distributions that formed maxima at α = 75–80°, while fluxes at 90° and <60° remained nearly unchanged. The observations occurred outside of the plasmasphere in the postmidnight region and were observed by both Van Allen Probes. Density, cyclotron frequency, and pitch angle of the peak flux were used to estimate resonant electron energy. The result of ~15–35 keV is consistent with the energies of the electrons showing the flux enhancements and corresponds to electrons in and above the steep flux gradient that signa. . .
Date: 03/2014 Publisher: Geophysical Research Letters Pages: 1869 - 1875 DOI: 10.1002/2013GL059165 Available at: http://doi.wiley.com/10.1002/2013GL059165
More Details
Authors: Taubenschuss Ulrich, Khotyaintsev Yuri V., ík Ondrej, Vaivads Andris, Cully Christopher M., et al.
Title: Wave normal angles of whistler-mode chorus rising and falling tones
Abstract: We present a study of wave normal angles (θk) of whistler mode chorus emission as observed by Time History of Events and Macroscale Interactions during Substorms (THEMIS) during the year 2008. The three inner THEMIS satellites THA, THD, and THE usually orbit Earth close to the dipole magnetic equator (±20°), covering a large range of L shells from the plasmasphere out to the magnetopause. Waveform measurements of electric and magnetic fields enable a detailed polarization analysis of chorus below 4 kHz. When displayed in a frequency-θk histogram, four characteristic regions of occurrence are evident. They are separated by gaps at f/fc,e≈0.5 (f is the chorus frequency, fc,e is the local electron cyclotron frequency) and at θk∼40°. Below θk∼40°, the average value for θk is pre. . .
Date: 12/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020575 Available at: http://doi.wiley.com/10.1002/2014JA020575
More Details
Authors: Fu Xiangrong, Cowee Misa M., Friedel Reinhard H., Funsten Herbert O, Gary Peter, et al.
Title: Whistler Anisotropy Instabilities as the Source of Banded Chorus: Van Allen Probes Observations and Particle-in-Cell Simulations
Abstract: Magnetospheric banded chorus is enhanced whistler waves with frequencies ωr < Ωe, where Ωe is the electron cyclotron frequency, and a characteristic spectral gap at ωr ≃ Ωe/2. This paper uses spacecraft observations and two-dimensional particle-in-cell (PIC) simulations in a magnetized, homogeneous, collisionless plasma to test the hypothesis that banded chorus is due to local linear growth of two branches of the whistler anisotropy instability excited by two distinct, anisotropic electron components of significantly different temperatures. The electron densities and temperatures are derived from HOPE instrument measurements on the Van Allen Probes A satellite during a banded chorus event on 1 November 2012. The observations are consistent with a three-component electron mod. . .
Date: 10/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020364 Available at: http://doi.wiley.com/10.1002/2014JA020364
More Details
2013
Authors: Ginet G P, ’Brien T P, Huston S L, Johnston W R, Guild T B, et al.
Title: AE9, AP9 and SPM: New Models for Specifying the Trapped Energetic Particle and Space Plasma Environment
Abstract: The radiation belts and plasma in the Earth’s magnetosphere pose hazards to satellite systems which restrict design and orbit options with a resultant impact on mission performance and cost. For decades the standard space environment specification used for spacecraft design has been provided by the NASA AE8 and AP8 trapped radiation belt models. There are well-known limitations on their performance, however, and the need for a new trapped radiation and plasma model has been recognized by the engineering community for some time. To address this challenge a new set of models, denoted AE9/AP9/SPM, for energetic electrons, energetic protons and space plasma has been developed. The new models offer significant improvements including more detailed spatial resolution and the quantification of u. . .
Date: 11/2013 Publisher: Space Science Reviews DOI: 10.1007/s11214-013-9964-y Available at: http://link.springer.com/article/10.1007%2Fs11214-013-9964-y
More Details
Authors: Mauk B H
Title: Analysis of EMIC-wave-moderated flux limitation of measured energetic ion spectra in multispecies magnetospheric plasmas
Abstract: A differential Kennel-Petschek (KP) flux limit for magnetospheric energetic ions is devised taking into account multiple ion species effects on electromagnetic ion cyclotron (EMIC) waves that scatter the ions. The idea is that EMIC waves may limit the highest ion intensities during acceleration phases of storms and substorms (~ hour) while other mechanisms (e.g., charge exchange) may account for losses below those limits and over longer periods of time. This approach is applied to published Earth magnetosphere energetic ion spectra (~ keV to ~1 MeV) for radial positions (L) 3 to 6.7 RE. The flatness of the most intense spectral shapes for <100 keV indicate sculpting by just such a mechanism, but modifications of traditional KP parameters are needed to account for maximum fluxes up to 5. . .
Date: 08/2013 Publisher: Geophysical Research Letters Pages: 3804 - 3808 DOI: 10.1002/grl.50789 Available at: http://doi.wiley.com/10.1002/grl.50789
More Details
Authors: Shprits Yuri, Kellerman Adam, Kondrashov Dmitri, and Subbotin Dmitriy
Title: Application of a new data operator-splitting data assimilation technique to the 3-D VERB diffusion code and CRRES measurements
Abstract: In this study we present 3-D data assimilation using CRRES data and 3-D Versatile Electron Radiation Belt Model (VERB) using a newly developed operator-splitting method. Simulations with synthetic data show that the operator-splitting Kalman filtering technique proposed in this study can successfully reconstruct the underlying dynamic evolution of the radiation belts. The method is further verified by the comparison with the conventional Kalman filter. We applied the new approach to 3-D data assimilation of real data to globally reconstruct the dynamics of the radiation belts using pitch angle, energy, and L shell dependent CRRES observations. An L shell time cross section of the global data assimilation results for nearly equatorially mirroring particles and high and low values of the fir. . .
Date: 10/2013 Publisher: Geophysical Research Letters Pages: 4998 - 5002 DOI: 10.1002/grl.50969 Available at: http://doi.wiley.com/10.1002/grl.50969
More Details
Authors: Millan R M, McCarthy M P, Sample J G, Smith D M, Thompson L D, et al.
Title: The Balloon Array for RBSP Relativistic Electron Losses (BARREL)
Abstract: BARREL is a multiple-balloon investigation designed to study electron losses from Earth’s Radiation Belts. Selected as a NASA Living with a Star Mission of Opportunity, BARREL augments the Radiation Belt Storm Probes mission by providing measurements of relativistic electron precipitation with a pair of Antarctic balloon campaigns that will be conducted during the Austral summers (January-February) of 2013 and 2014. During each campaign, a total of 20 small (∼20 kg) stratospheric balloons will be successively launched to maintain an array of ∼5 payloads spread across ∼6 hours of magnetic local time in the region that magnetically maps to the radiation belts. Each balloon carries an X-ray spectrometer to measure the bremsstrahlung X-rays produced by precipitating relativistic electr. . .
Date: 11/2013 Publisher: Space Science Reviews DOI: 10.1007/s11214-013-9971-z Available at: http://link.springer.com/article/10.1007%2Fs11214-013-9971-z
More Details
Authors: Lee Jeongwoo, Min Kyungguk, and Kim Kap-Sung
Title: Characteristic dimension of electromagnetic ion cyclotron wave activity in the magnetosphere
Abstract: [1] In this paper, we estimate the size of coherent activity of electromagnetic ion cyclotron (EMIC) waves using the multi‒spacecraft observations made during the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission. We calculate the cross‒correlations between EMIC wave powers measured by different THEMIS spacecraft, plot them over the separation distances between pairs of observing spacecraft, and determine the 1/e folding distance of the correlations as the characteristic dimension of the coherent wave activity. The characteristic radius in the direction transverse to the local magnetic field is found to lie in rather a wide range of 1500–8600 km varying from the AM to PM sectors and also from hydrogen to helium bands. However, the characteristic d. . .
Date: 04/2013 Publisher: Journal of Geophysical Research: Space Physics Pages: 1651 - 1658 DOI: 10.1002/jgra.50242 Available at: http://doi.wiley.com/10.1002/jgra.50242
More Details
Authors: Rodger Craig J., Kavanagh Andrew J., Clilverd Mark A., and Marple Steve R.
Title: Comparison between POES energetic electron precipitation observations and riometer absorptions: Implications for determining true precipitation fluxes
Abstract: Energetic electron precipitation (EEP) impacts the chemistry of the middle atmosphere with growing evidence of coupling to surface temperatures at high latitudes. To better understand this link, it is essential to have realistic observations to properly characterize precipitation and which can be incorporated into chemistry-climate models. The Polar-orbiting Operational Environmental Satellite (POES) detectors measure precipitating particles but only integral fluxes and only in a fraction of the bounce loss cone. Ground-based riometers respond to precipitation from the whole bounce loss cone; they measure the cosmic radio noise absorption (CNA), a qualitative proxy with scant direct information on the energy flux of EEP. POES observations should have a direct relationship with ΔCNA and co. . .
Date: 12/2013 Publisher: Journal of Geophysical Research: Space Physics Pages: 7810 - 7821 DOI: 10.1002/2013JA019439 Available at: http://doi.wiley.com/10.1002/2013JA019439
More Details
Authors: Li W, Ni B, Thorne R M, Bortnik J, Green J C, et al.
Title: Constructing the global distribution of chorus wave intensity using measurements of electrons by the POES satellites and waves by the Van Allen Probes
Abstract: We adopt a physics-based technique to infer chorus wave amplitudes from the low-altitude electron population (30–100 keV) measured by multiple Polar Orbiting Environmental Satellites (POES), which provide extensive coverage over a broad region in L-shell and magnetic local time (MLT). This technique is validated by analyzing conjunction events between the Van Allen Probes measuring chorus wave amplitudes near the equator and POES satellites measuring the 30–100 keV electron population at the conjugate low altitudes. We apply this technique to construct the chorus wave distributions during the 8–9 October storm in 2012 and demonstrate that the inferred chorus wave amplitudes agree reasonably well with conjugate measurements of chorus wave amplitudes from the Van Allen Probes. The . . .
Date: 09/2013 Publisher: Geophysical Research Letters Pages: 4526 - 4532 DOI: 10.1002/grl.v40.1710.1002/grl.50920 Available at: http://doi.wiley.com/10.1002/grl.v40.17http://doi.wiley.com/10.1002/grl.50920
More Details
Authors: Whittaker Ian C., Gamble Rory J., Rodger Craig J., Clilverd Mark A., and Sauvaud é
Title: Determining the spectra of radiation belt electron losses: Fitting DEMETER electron flux observations for typical and storm times
Abstract: The energy spectra of energetic electron precipitation from the radiation belts are studied in order to improve our understanding of the influence of radiation belt processes. The Detection of Electromagnetic Emissions Transmitted from Earthquake Regions (DEMETER) microsatellite electron flux instrument is comparatively unusual in that it has very high energy resolution (128 channels with 17.9 keV widths in normal survey mode), which lends itself to this type of spectral analysis. Here electron spectra from DEMETER have been analyzed from all six years of its operation, and three fit types (power law, exponential, and kappa-type) have been applied to the precipitating flux observations. We show that the power law fit consistently provides the best representation of the flux and that the ka. . .
Date: 12/2013 Publisher: Journal of Geophysical Research: Space Physics Pages: 7611 - 7623 DOI: 10.1002/2013JA019228 Available at: http://doi.wiley.com/10.1002/2013JA019228
More Details
Authors: Mann Ian R., Lee E. A., Claudepierre S G, Fennell J. F., Degeling A., et al.
Title: Discovery of the action of a geophysical synchrotron in the Earth’s Van Allen radiation belts
Abstract: Although the Earth’s Van Allen radiation belts were discovered over 50 years ago, the dominant processes responsible for relativistic electron acceleration, transport and loss remain poorly understood. Here we show evidence for the action of coherent acceleration due to resonance with ultra-low frequency waves on a planetary scale. Data from the CRRES probe, and from the recently launched multi-satellite NASA Van Allen Probes mission, with supporting modeling, collectively show coherent ultra-low frequency interactions which high energy resolution data reveals are far more common than either previously thought or observed. The observed modulations and energy-dependent spatial structure indicate a mode of action analogous to a geophysical synchrotron; this new mode of response represents . . .
Date: 11/2013 Publisher: Nature Communications DOI: 10.1038/ncomms3795 Available at: http://www.nature.com/doifinder/10.1038/ncomms3795
More Details
Authors: Ukhorskiy A Y, and Sitnov M I
Title: Dynamics of Radiation Belt Particles
Abstract: This paper reviews basic concepts of particle dynamics underlying theoretical aspect of radiation belt modeling and data analysis. We outline the theory of adiabatic invariants of quasiperiodic Hamiltonian systems and derive the invariants of particle motion trapped in the radiation belts. We discuss how the nonlinearity of resonant interaction of particles with small-amplitude plasma waves, ubiquitous across the inner magnetosphere, can make particle motion stochastic. Long-term evolution of a stochastic system can be described by the Fokker-Plank (diffusion) equation. We derive the kinetic equation of particle diffusion in the invariant space and discuss its limitations and associated challenges which need to be addressed in forthcoming radiation belt models and data analysis.
Date: 11/2013 Publisher: Space Science Reviews Pages: 545-578 DOI: 10.1007/s11214-012-9938-5 Available at: http://link.springer.com/article/10.1007%2Fs11214-012-9938-5
More Details
Authors: Schultz Colin
Title: Dynamics of the Earth's Radiation Belts and Inner Magnetosphere
Abstract: Trapped by Earth's magnetic field far above the planet's surface, the energetic particles that fill the radiation belts are a sign of the Sun's influence and a threat to our technological future. In the AGU monograph Dynamics of the Earth's Radiation Belts and Inner Magnetosphere, editors Danny Summers, Ian R. Mann, Daniel N. Baker, and Michael Schulz explore the inner workings of the magnetosphere. The book reviews current knowledge of the magnetosphere and recent research results and sets the stage for the work currently being done by NASA's Van Allen Probes (formerly known as the Radiation Belt Storm Probes). In this interview, Eos talks to Summers about magnetospheric research, whistler mode waves, solar storms, and the effects of the radiation belts on Earth.
Date: 12/2013 Publisher: Eos, Transactions American Geophysical Union Pages: 509 - 509 DOI: 10.1002/eost.v94.5210.1002/2013EO520007 Available at: http://doi.wiley.com/10.1002/eost.v94.52http://doi.wiley.com/10.1002/2013EO520007
More Details
Authors: Maurer Richard, Goldsten J O, Peplowski P N, Holmes-Siedle A G, Butler Michael, et al.
Title: Early Results from the Engineering Radiation Monitor (ERM) and Solar Cell Monitor on the Van Allen Probes Mission
Abstract: The Engineering Radiation Monitor (ERM) measures dose, dose rate and charging currents on the Van Allen Probes mission to study the dynamics of earth's Van Allen radiation belts. Early results from this monitor show a variation in dose rates with time, a correlation between the dosimeter and charging current data, a map of charging current versus orbit altitude and a comparison of cumulative dose to pre-launch modeling after 260 days. Solar cell degradation monitor patches track the decrease in solar array output as displacement damage accumulates.
Date: 11/2013 Publisher: IEEE DOI: 10.1109/TNS.2013.2281937 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6651707
More Details
Authors: Maurer Richard, Goldsten John, Peplowski Patrick, Holmes-Siedle Andrew, Butler Michael, et al.
Title: Early Results From the Engineering Radiation Monitor (ERM) and Solar Cell Monitor on the Van Allen Probes Mission
Abstract: The Engineering Radiation Monitor (ERM) measures dose, dose rate and charging currents on the Van Allen Probes mission to study the dynamics of earth's Van Allen radiation belts. Early results from this monitor show a variation in dose rates with time, a correlation between the dosimeter and charging current data, a map of charging current versus orbit altitude and a comparison of cumulative dose to pre-launch modeling after 260 days. Solar cell degradation monitor patches track the decrease in solar array output as displacement damage accumulates.
Date: Jan-12-2013 Publisher: IEEE Transactions on Nuclear Science Pages: 4053 - 4058 DOI: 10.1109/TNS.2013.2281937 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6651707
More Details
Authors: Kletzing C A, Kurth W S, Acuna M, MacDowall R J, Torbert R B, et al.
Title: The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP
Abstract: The Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) investigation on the NASA Radiation Belt Storm Probes (now named the Van Allen Probes) mission provides key wave and very low frequency magnetic field measurements to understand radiation belt acceleration, loss, and transport. The key science objectives and the contribution that EMFISIS makes to providing measurements as well as theory and modeling are described. The key components of the instruments suite, both electronics and sensors, including key functional parameters, calibration, and performance, demonstrate that EMFISIS provides the needed measurements for the science of the RBSP mission. The EMFISIS operational modes and data products, along with online availability and data tools provide the radiation bel. . .
Date: 11/2013 Publisher: Space Science Reviews DOI: 10.1007/s11214-013-9993-6 Available at: http://link.springer.com/article/10.1007%2Fs11214-013-9993-6
More Details
Authors: Wygant J R, Bonnell J W, Goetz K, Ergun R E, Mozer F S, et al.
Title: The Electric Field and Waves (EFW) Instruments on the Radiation Belt Storm Probes Mission
Abstract: The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency electric fields and waves associated with the major mechanisms responsible for the acceleration of energetic charged particles in the inner magnetosphere of the Earth. For this measurement, the instrument uses two pairs of spherical double probe sensors at the ends of orthogonal centripetally deployed booms in the spin plane with tip-to-tip separations of 100 meters. The third component of the electric field is measured by two spherical sensors separated by ∼15 m, deployed at the ends of two stacer booms oppositely directed along the spin axis of the spacecraft. The instrume. . .
Date: 11/2013 Publisher: Space Science Reviews DOI: 10.1007/s11214-013-0013-7 Available at: http://link.springer.com/article/10.1007%2Fs11214-013-0013-7
More Details
Authors: Reeves G D, Spence H E, Henderson M G, Morley S. K., Friedel R H W, et al.
Title: Electron Acceleration in the Heart of the Van Allen Radiation Belts
Abstract: The Van Allen radiation belts contain ultrarelativistic electrons trapped in Earth’s magnetic field. Since their discovery in 1958, a fundamental unanswered question has been how electrons can be accelerated to such high energies. Two classes of processes have been proposed: transport and acceleration of electrons from a source population located outside the radiation belts (radial acceleration) or acceleration of lower-energy electrons to relativistic energies in situ in the heart of the radiation belts (local acceleration). We report measurements from NASA’s Van Allen Radiation Belt Storm Probes that clearly distinguish between the two types of acceleration. The observed radial profiles of phase space density are characteristic of local acceleration in the heart of the radiation belt. . .
Date: 07/2013 Publisher: Science Pages: 991 - 994 DOI: 10.1126/science.1237743 Available at: http://www.sciencemag.org/cgi/doi/10.1126/science.1237743
More Details
Authors: Goldsten J O, Maurer R H, Peplowski P N, Holmes-Siedle A G, Herrmann C C, et al.
Title: The Engineering Radiation Monitor for the Radiation Belt Storm Probes Mission
Abstract: An Engineering Radiation Monitor (ERM) has been developed as a supplementary spacecraft subsystem for NASA’s Radiation Belt Storm Probes (RBSP) mission. The ERM will monitor total dose and deep dielectric charging at each RBSP spacecraft in real time. Configured to take the place of spacecraft balance mass, the ERM contains an array of eight dosimeters and two buried conductive plates. The dosimeters are mounted under covers of varying shielding thickness to obtain a dose-depth curve and characterize the electron and proton contributions to total dose. A 3-min readout cadence coupled with an initial sensitivity of ∼0.01 krad should enable dynamic measurements of dose rate throughout the 9-hr RBSP orbit. The dosimeters are Radiation-sensing Field Effect Transistors (RadFETs) and operate. . .
Date: 11/2013 Publisher: Space Science Reviews DOI: 10.1007/s11214-012-9917-x Available at: http://link.springer.com/article/10.1007%2Fs11214-012-9917-x
More Details

Pages