Biblio

Found 909 results
2014
Authors: Palo Scott E., Gerhardt David, Li Xinlin, Blum Lauren, Schiller Quintin, et al.
Title: One year of on-orbit performance of the Colorado Student Space Weather Experiment (CSSWE)
Abstract: The Colorado Student Space Weather Experiment is a 3-unit (10cm × 10cm × 30cm) CubeSat funded by the National Science Foundation and constructed at the University of Colorado (CU). The CSSWE science instrument, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile), provides directional differential flux measurements of 0.5 to >3.3 MeV electrons and 9 to 40 MeV protons. Though a collaboration of 60+ multidisciplinary graduate and undergraduate students working with CU professors and engineers at the Laboratory for Atmospheric and Space Physics (LASP), CSSWE was designed, built, tested, and delivered in 3 years. On September 13, 2012, CSSWE was inserted to a 477 × 780 km, 65° orbit as a secondary payload on an Atlas V through the NASA Educational Launch of. . .
Date: 01/2014 Publisher: IEEE DOI: 10.1109/USNC-URSI-NRSM.2014.6928087 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6928087
More Details
Authors: Adams Norman, Copeland David, Mick Alan, and Pinkine Nickalaus
Title: Optimization of deep-space Ka-band link schedules
Abstract: Downlink scheduling methods that minimize either contact time or data latency are described. For deep-space missions these two methods yield very different schedules. Optimal scheduling algorithms are straightforward for ideal mission scenarios. In practice, additional schedule requirements preclude a tractable optimal algorithm. In lieu of an optimal solution, an iterative sub-optimal algorithm is described. These methods are motivated in part by a need to balance mission risk, which increases with data latency, and mission cost, which increases with contact time. Cost is reduced by delaying downlink contacts until higher data rates are available. Previous work described optimization of individual Ka-band contacts in the presence of time-varying and statistical link parameters. The presen. . .
Date: 03/2014 Publisher: IEEE DOI: 10.1109/AERO.2014.6836351 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6836351
More Details
Authors: Powers Nicole
Title: A Parametric Approach to NASA Mission Operations Costing
Abstract: Quantifying the cost of mission operations can be problematic. Currently few tools exist to estimate these costs and fewer that utilize a parametric approach. This paper begins the process of developing a parametric model for estimating mission operation costs. We hypothesize that the costs of mission operations are determined by the duration and type of operation activity. For the purposes of this paper operation activities fall into the following four categories: hibernated cruise, standard cruise, flyby, and high intensity operations. Hypothesis tests were conducted on each of the aforementioned categories and the results are based on data from APL’s historical missions. Those results will be used to develop a Cost Estimating Relationship (CER) to better predict missio. . .
Date: 10/2014 Publisher: American Institute of Aeronautics and Astronautics DOI: 10.2514/MSPACE1410.2514/6.2014-4398 Available at: http://arc.aiaa.org/doi/abs/10.2514/6.2014-4398
More Details
Authors: Zhao H., Li X, Blake J B, Fennell J. F., Claudepierre S G, et al.
Title: Peculiar pitch angle distribution of relativistic electrons in the inner radiation belt and slot region
Abstract: The relativistic electrons in the inner radiation belt have received little attention in the past due to sparse measurements and unforgiving contamination from the inner belt protons. The high-quality measurements of the Magnetic Electron Ion Spectrometer instrument onboard Van Allen Probes provide a great opportunity to investigate the dynamics of relativistic electrons in the low L region. In this letter, we report the newly unveiled pitch angle distribution (PAD) of the energetic electrons with minima at 90° near the magnetic equator in the inner belt and slot region. Such a PAD is persistently present throughout the inner belt and appears in the slot region during storms. One hypothesis for 90° minimum PADs is that off 90° electrons are preferentially heated by chorus waves just out. . .
Date: 04/2014 Publisher: Geophysical Research Letters Pages: 2250 - 2257 DOI: 10.1002/2014GL059725 Available at: http://doi.wiley.com/10.1002/2014GL059725
More Details
Authors: Wang X., Malaspina D. M., Ergun R. E., and M. Horányi.
Title: Photoelectron-mediated spacecraft potential fluctuations
Abstract: Electric field fluctuations such as those due to plasma waves in Earth's magnetosphere may modulate photoelectrons emitted from spacecraft surface, causing fluctuations in spacecraft potential. We experimentally investigate such photoelectron-mediated spacecraft potential fluctuations. The photoelectric charge of a spacecraft model is found to increase with increasing applied electric field as more photoelectrons escape the spacecraft model surface and dissipates with a decrease in the electric field through collection of ambient plasma electrons. When the applied electric field is driven to oscillate at a frequency lower than the response frequency of the spacecraft model, the surface potential follows the electric field oscillations. The spacecraft model maintains an approximately consta. . .
Date: 02/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 1094 - 1101 DOI: 10.1002/2013JA019502 Available at: http://doi.wiley.com/10.1002/2013JA019502
More Details
Authors: Brito Thiago V.
Title: Precipitation and energization of relativistic radiation belt electrons induced by ULF oscillations in the magnetosphere
Abstract: There is a renewed interest in the study of the radiation belts with the recent launch of the Van Allen Probes satellites. The mechanisms that drive the global response of the radiation belts to geomagnetic storms are not yet well understood. Global simulations using magnetohydrodynamics (MHD) model fields as drivers provide a valuable tool for studying the dynamics of these MeV energetic particles. ACE satellite measurements of the MHD solar wind parameters are used as the upstream boundary condition for the Lyon-Fedder-Mobarry (LFM) 3D MHD code calculation of fields, used to drive electrons in 2D and 3D test particle simulations. In this study simulations were performed to investigate energization and loss of energetic radiation belt electrons. The response of the radiation belts to a CM. . .
Date: DOI: N/A Available at: http://search.proquest.com/docview/1611957223?accountid=27702
More Details
Authors: Simms Laura E., Pilipenko Viacheslav, Engebretson Mark J, Reeves Geoffrey D, Smith A. J., et al.
Title: Prediction of relativistic electron flux at geostationary orbit following storms: Multiple regression analysis
Abstract: Many solar wind and magnetosphere parameters correlate with relativistic electron flux following storms. These include relativistic electron flux before the storm; seed electron flux; solar wind velocity and number density (and their variation); interplanetary magnetic field Bz, AE and Kp indices; and ultra low frequency (ULF) and very low frequency (VLF) wave power. However, as all these variables are intercorrelated, we use multiple regression analyses to determine which are the most predictive of flux when other variables are controlled. Using 219 storms (1992–2002), we obtained hourly averaged electron fluxes for outer radiation belt relativistic electrons (>1.5 MeV) and seed electrons (100 keV) from Los Alamos National Laboratory spacecraft (geosynchronous orbit). For each storm. . .
Date: 09/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 7297 - 7318 DOI: 10.1002/jgra.v119.910.1002/2014JA019955 Available at: http://doi.wiley.com/10.1002/jgra.v119.9http://doi.wiley.com/10.1002/2014JA019955
More Details
Authors: Kletzing Craig A.
Title: Progress on understanding chorus emissions from data of the electric and magnetic field instrument suite and integrated science (EMFISIS) on the Van Allen Probes
Abstract: The physics of the creation, loss, and transport of radiation belt particles is intimately connected to the electric and magnetic fields which mediate these processes. A key wave-particle interaction important to both acceleration and loss in the radiation belts is the of whistler-mode chorus interacting with energetic electrons. To measure this important radiation belt interaction, the two-satellite Van Allen Probes mission utilizes one of the most complete sets of measurements ever made in the inner magnetosphere. As part of the mission, the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) investigation is an integrated set of instruments consisting of a tri-axial fluxgate magnetometer (MAG) and a Waves instrument which includes a tri-axial search coil magnet. . .
Date: 08/2014 Publisher: IEEE DOI: 10.1109/URSIGASS.2014.6929872 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6929872
More Details
Authors: Foster J. C., Erickson P. J., Baker D N, Claudepierre S G, Kletzing C A, et al.
Title: Prompt energization of relativistic and highly relativistic electrons during a substorm interval: Van Allen Probes observations
Abstract: On 17 March 2013, a large magnetic storm significantly depleted the multi-MeV radiation belt. We present multi-instrument observations from the Van Allen Probes spacecraft Radiation Belt Storm Probe A and Radiation Belt Storm Probe B at ~6 Re in the midnight sector magnetosphere and from ground-based ionospheric sensors during a substorm dipolarization followed by rapid reenergization of multi-MeV electrons. A 50% increase in magnetic field magnitude occurred simultaneously with dramatic increases in 100 keV electron fluxes and a 100 times increase in VLF wave intensity. The 100 keV electrons and intense VLF waves provide a seed population and energy source for subsequent radiation belt enhancements. Highly relativistic (>2 MeV) electron fluxes increased immediately at L* ~ 4.5. . .
Date: 01/2014 Publisher: Geophysical Research Letters Pages: 20 - 25 DOI: 10.1002/2013GL058438 Available at: http://doi.wiley.com/10.1002/2013GL058438
More Details
Authors: Foster John C, and Erickson Philip J.
Title: Prompt energization of relativistic and highly relativistic electrons during a substorm interval
Abstract: On 17 March 2013, a large magnetic storm significantly depleted the multi-MeV radiation belt. We present multi-instrument observations from the Van Allen Probes spacecraft Radiation Belt Storm Probe A and Radiation Belt Storm Probe B at ∼6 Re in the midnight sector magnetosphere and from ground-based ionospheric sensors during a substorm dipolarization followed by rapid reenergization of multi-MeV electrons [1]. A 50% increase in magnetic field magnitude occurred simultaneously with dramatic increases in 100 keV electron fluxes and a 100 times increase in VLF wave intensity. Chorus is excited following the injection of low-energy (1–30 keV) plasma sheet electrons into the inner magnetosphere [2]. During the 17 March substorm injection, cold plasma that had circulated into the nightside. . .
Date: 08/2014 Publisher: IEEE DOI: 10.1109/URSIGASS.2014.6929876 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6929876
More Details
Authors: Li W, Ni B, Thorne R M, Bortnik J, Nishimura Y., et al.
Title: Quantifying hiss-driven energetic electron precipitation: A detailed conjunction event analysis
Abstract: We analyze a conjunction event between the Van Allen Probes and the low-altitude Polar Orbiting Environmental Satellite (POES) to quantify hiss-driven energetic electron precipitation. A physics-based technique based on quasi-linear diffusion theory is used to estimate the ratio of precipitated and trapped electron fluxes (R), which could be measured by the two-directional POES particle detectors, using wave and plasma parameters observed by the Van Allen Probes. The remarkable agreement between modeling and observations suggests that this technique is applicable for quantifying hiss-driven electron scattering near the bounce loss cone. More importantly, R in the 100–300 keV energy channel measured by multiple POES satellites over a broad L magnetic local time region can potentially pr. . .
Date: 02/2014 Publisher: Geophysical Research Letters Pages: 1085 - 1092 DOI: 10.1002/2013GL059132 Available at: http://doi.wiley.com/10.1002/2013GL059132
More Details
Authors: Boyd A. J., Spence H E, Claudepierre S G, Fennell J. F., Blake J B, et al.
Title: Quantifying the radiation belt seed population in the 17 March 2013 electron acceleration event
Abstract: We present phase space density (PSD) observations using data from the Magnetic Electron Ion Spectrometer instrument on the Van Allen Probes for the 17 March 2013 electron acceleration event. We confirm previous results and quantify how PSD gradients depend on the first adiabatic invariant. We find a systematic difference between the lower-energy electrons (1 MeV with a source region within the radiation belts. Our observations show that the source process begins with enhancements to the 10s–100s keV energy seed population, followed by enhancements to the >1 MeV population and eventually leading to enhancements in the multi-MeV electron population. These observations provide the clearest evidence to date . . .
Date: 04/2014 Publisher: Geophysical Research Letters Pages: 2275 - 2281 DOI: 10.1002/2014GL059626 Available at: http://doi.wiley.com/10.1002/2014GL059626
More Details
Authors: Su Zhenpeng, Zhu Hui, Xiao Fuliang, Zheng Huinan, Wang Yuming, et al.
Title: Quantifying the relative contributions of substorm injections and chorus waves to the rapid outward extension of electron radiation belt
Abstract: We study the rapid outward extension of the electron radiation belt on a timescale of several hours during three events observed by RBSP and THEMIS satellites, and particularly quantify the contributions of substorm injections and chorus waves to the electron flux enhancement near the outer boundary of radiation belt. A comprehensive analysis including both observations and simulations is performed for the first event on 26 May 2013. The outer boundary of electron radiation belt moved from L = 5.5 to L > 6.07 over about 6 hours, with up to four orders of magnitude enhancement in the 30 keV-5 MeV electron fluxes at L = 6. The observations show that the substorm injection can cause 100% and 20% of the total subrelativistic (~0.1 MeV) and relativistic (2-5 MeV) electron . . .
Date: 12/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020709 Available at: http://doi.wiley.com/10.1002/2014JA020709
More Details
Authors: Gerrard Andrew, Lanzerotti Louis, Gkioulidou Matina, Mitchell Donald, Manweiler Jerry, et al.
Title: Quiet time observations of He ions in the inner magnetosphere as observed from the RBSPICE instrument aboard the Van Allen Probes mission
Abstract: He ions contribute to Earth's ring current energy and species population density and are important in understanding ion transport and charge exchange processes in the inner magnetosphere. He ion flux measurements made by the Van Allen Probes Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument are presented in this paper. Particular focus is centered on geomagnetically quiet intervals in late 2012 and 2013 that show the flux, L-shell, and energy (65 keV to 518 keV) morphology of ring current He ions between geomagnetic storm injection events. The overall He ion abundance during the first nine months of RBSPICE observations, the appearance of a persistent high energy, low L-shell He ion population, and the temporal evolution of this population all provide new insights. . .
Date: 02/2014 Publisher: Geophysical Research Letters Pages: 1100 - 1105 DOI: 10.1002/2013GL059175 Available at: http://doi.wiley.com/10.1002/2013GL059175
More Details
Authors: Holmes-Siedle A.G., Maurer R H, and Peplowski P N
Title: RadFET Dosimeters in the Belt: the Van Allen Probes on Day 365
Abstract: Van Allen Probes A and B, launched more than a year ago (in August 2012), carried 16 p-channel metal-oxide-semiconductor Radiation-sensitive Field Effect Transistors (RadFET)s into an orbit designed by NASA to probe the heart of the trapped-radiation belts. Nearly 350 days of in situ measurements from the Engineering Radiation Monitor (ERM) (1) demonstrated strong variations of dose rates with time, (2) revealed a critical correlation between the ERM RadFET dosimeters and the ERM Faraday cup data on charged particles, and (3) permitted the mapping of the belts by measuring variation with orbit altitude. This paper provides an update on early results given in a NSREC2012 paper along with details and discussion of the RadFET dosimetry data analyzed .
Date: 04/2014 Publisher: IEEE Transactions on Nuclear Science Pages: 948-954 DOI: N/A Available at: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6786389
More Details
Authors: Holmes-Siedle A G, Goldsten J O, Maurer R H, and Peplowski P N
Title: RadFET Dosimeters in the Belt: the Van Allen Probes on Day 365
Abstract: Van Allen Probes A and B, launched more than a year ago (in August 2012), carried 16 p-channel metal-oxide-semiconductor Radiation-sensitive Field Effect Transistors (RadFET)s into an orbit designed by NASA to probe the heart of the trapped-radiation belts. Nearly 350 days of in situ measurements from the Engineering Radiation Monitor (ERM) (1) demonstrated strong variations of dose rates with time, (2) revealed a critical correlation between the ERM RadFET dosimeters and the ERM Faraday cup data on charged particles, and (3) permitted the mapping of the belts by measuring variation with orbit altitude. This paper provides an update on early results given in a NSREC2012 paper along with details and discussion of the RadFET dosimetry data analyzed .
Date: 04/2014 Publisher: IEEE Transactions on Nuclear Science Pages: 948 - 954 DOI: 10.1109/TNS.2014.2307012 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6786389
More Details
Authors: Li Zhao, Hudson Mary, and Chen Yue
Title: Radial diffusion comparing a THEMIS statistical model with geosynchronous measurements as input
Abstract: The outer boundary energetic electron flux is used as a driver in radial diffusion calculations, and its precise determination is critical to the solution. A new model was proposed recently based on Time History of Events and Macroscale Interactions during Substorms (THEMIS) measurements to express the boundary flux as three fit functions of solar wind parameters in a response window that depend on energy and which solar wind parameter is used: speed, density, or both. The Dartmouth radial diffusion model has been run using Los Alamos National Laboratory (LANL) geosynchronous satellite measurements as the constraint for a one-month interval in July to August 2004, and the calculated phase space density (PSD) is compared with GPS measurements, at magnetic equatorial plane crossings, as a te. . .
Date: 03/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 1863 - 1873 DOI: 10.1002/jgra.v119.310.1002/2013JA019320 Available at: http://doi.wiley.com/10.1002/jgra.v119.3http://doi.wiley.com/10.1002/2013JA019320
More Details
Authors: Albert J
Title: Radial diffusion simulations of the 20 September 2007 radiation belt dropout
Abstract: This is a study of a dropout of radiation belt electrons, associated with an isolated solar wind density pulse on 20 September 2007, as seen by the solid-state telescopes (SST) detectors on THEMIS (Time History of Events and Macroscale Interactions during Substorms). Omnidirectional fluxes were converted to phase space density at constant invariants M = 700 MeV G−1 and K = 0.014 RE G1/2, with the assumption of local pitch angle α ≈ 80° and using the T04 magnetic field model. The last closed drift shell, which was calculated throughout the time interval, never came within the simulation outer boundary of L* = 6. It is found, using several different models for diffusion rates, that radial diffusion alone only allows the data-driven, time-dependent boundary values at Lmax = 6 and Lmin =. . .
Date: 11/2014 Publisher: Annales Geophysicae Pages: 925 - 934 DOI: 10.5194/angeo-32-925-2014 Available at: http://www.ann-geophys.net/32/925/2014/http://www.ann-geophys.net/32/925/2014/angeo-32-925-2014.pdf
More Details
Authors: Thorne R M, Li W, Ma Q, Ni B, and Bortnik J
Title: Radiation belt electron acceleration by chorus waves during the 17 March 2013 storm
Abstract: Local acceleration driven by whistler-mode chorus waves is suggested to be fundamentally important for accelerating seed electron population to ultra-relativistic energies in the outer radiation belt. In this study, we quantitatively evaluate chorus-driven electron acceleration during the 17 March 2013 storm, when Van Allen Probes observed very rapid electron acceleration up to multi MeV within ∼15 hours. A clear peak in electron phase space density observed at L∗ ∼ 4 indicates that the internal local acceleration process was operating. We construct the global distribution of chorus wave intensity from the low-altitude electron measurements by multiple POES satellites over a broad L-MLT region, which is used to simulate the radiation belt electron dynamics driven by chorus waves. Our. . .
Date: 08/2014 Publisher: IEEE DOI: 10.1109/URSIGASS.2014.6929882 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6929882
More Details
Authors: Li W, Thorne R M, Ma Q, Ni B, Bortnik J, et al.
Title: Radiation belt electron acceleration by chorus waves during the 17 March 2013 storm
Abstract: Local acceleration driven by whistler-mode chorus waves is fundamentally important for accelerating seed electron populations to highly relativistic energies in the outer radiation belt. In this study, we quantitatively evaluate chorus-driven electron acceleration during the 17 March 2013 storm, when the Van Allen Probes observed very rapid electron acceleration up to several MeV within ~12 hours. A clear radial peak in electron phase space density (PSD) observed near L* ~4 indicates that an internal local acceleration process was operating. We construct the global distribution of chorus wave intensity from the low-altitude electron measurements made by multiple Polar Orbiting Environmental Satellites (POES) satellites over a broad region, which is ultimately used to simulate the radiati. . .
Date: 06/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 4681 - 4693 DOI: 10.1002/jgra.v119.610.1002/2014JA019945 Available at: http://doi.wiley.com/10.1002/jgra.v119.6http://doi.wiley.com/10.1002/2014JA019945
More Details
Authors: McCarthy Michael P., Millan Robyn M., Sample John G., and Smith David M.
Title: Radiation belt losses observed from multiple stratospheric balloons over Antarctica
Abstract: Relativistic electrons, trapped by Earth's magnetic field, have received increasing attention since increasing numbers of commercial and research spacecraft traverse regions of high radiation flux. The Van Allen probes were launched into Earth's radiation belts in September 2012, making comprehensive measurements of charged particle fluxes and electromagnetic fields, with the objective of a better understanding of the processes that modulate radiation belt fluxes. Because losses of radiation belt electrons to Earth's atmosphere are very difficult to measure from high altitude spacecraft, a balloon-based program, consisting of campaigns in January 2013 and 2014, was funded to measure losses in conjunction with the Van Allen probes mission. We present results from both balloon campaigns, whi. . .
Date: 08/2014 Publisher: IEEE DOI: 10.1109/URSIGASS.2014.6929960 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6929960
More Details
Authors: Kress B T, Hudson M K, and Paral J.
Title: Rebuilding of the Earth's outer electron belt during 8-10 October 2012
Abstract: Geomagnetic storms often include strong magnetospheric convection caused by sustained periods of southward interplanetary magnetic field. During periods of strong convection, the Alfvén layer, which separates the region of sunward convection from closed drift shells, is displaced earthward allowing plasma sheet particles with energies in the hundreds of keV direct access inside of geosynchronous. Subsequent outward motion of the Alfvén boundary and adiabatic energization during storm recovery traps plasma sheet electrons on closed drift shells providing a seed population for the outer radiation belts. In situ observations of the 8–10 October 2012 geomagnetic storm and MHD test particle simulations illustrate the morphology of this process. Data and modeling results support the conclusi. . .
Date: 02/2014 Publisher: Geophysical Research Letters Pages: 749 - 754 DOI: 10.1002/2013GL058588 Available at: http://doi.wiley.com/10.1002/2013GL058588
More Details
Authors: Kletzing C. A.
Title: Recent results from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on the Van Allen Probes
Abstract: The physics of the creation, loss, and transport of radiation belt particles is intimately connected to the electric and magnetic fields which mediate these processes. A large range of field and particle interactions are involved in this physics from large-scale ring current ion and magnetic field dynamics to microscopic kinetic interactions of whistler-mode chorus waves with energetic electrons. To measure these kinds of radiation belt interactions, NASA implemented the two-satellite Van Allen Probes mission. As part of the mission, the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) investigation is an integrated set of instruments consisting of a tri-axial fluxgate magnetometer (MAG) and a Waves instrument which includes a tri-axial search coil magnetometer. . .
Date: 01/2014 Publisher: IEEE DOI: 10.1109/USNC-URSI-NRSM.2014.6928090 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6928090
More Details
Authors: Khazanov G., Sibeck D., Tel'nikhin A., and Kronberg T.
Title: Relativistic electron precipitation events driven by electromagnetic ion-cyclotron waves
Abstract: We adopt a canonical approach to describe the stochastic motion of relativistic belt electrons and their scattering into the loss cone by nonlinear EMIC waves. The estimated rate of scattering is sufficient to account for the rate and intensity of bursty electron precipitation. This interaction is shown to result in particle scattering into the loss cone, forming ∼10 s microbursts of precipitating electrons. These dynamics can account for the statistical correlations between processes of energization, pitch angle scattering, and relativistic electron precipitation events, that are manifested on large temporal scales of the order of the diffusion time ∼tens of minutes.
Date: 08/2014 Publisher: Physics of Plasmas Pages: 082901 DOI: 10.1063/1.4892185 Available at: http://scitation.aip.org/content/aip/journal/pop/21/8/10.1063/1.4892185
More Details
Authors: Chen Yue, Friedel Reiner H W, Henderson Michael G., Claudepierre Seth G., Morley Steven K., et al.
Title: REPAD: An empirical model of pitch angle distributions for energetic electrons in the Earth's outer radiation belt
Abstract: We have recently conducted a statistical survey on pitch angle distributions of energetic electrons trapped in the Earth's outer radiation belt, and a new empirical model was developed based upon survey results. This model—relativistic electron pitch angle distribution (REPAD)—aims to present statistical pictures of electron equatorial pitch angle distributions, instead of the absolute flux levels, as a function of energy, L shell, magnetic local time, and magnetic activity. To quantify and facilitate this statistical survey, we use Legendre polynomials to fit long-term in situ directional fluxes observed near the magnetic equator from three missions: CRRES, Polar, and LANL-97A. As the first of this kind of model, REPAD covers the whole outer belt region, providing not only the mean an. . .
Date: 03/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 1693 - 1708 DOI: 10.1002/jgra.v119.310.1002/2013JA019431 Available at: http://doi.wiley.com/10.1002/jgra.v119.3http://doi.wiley.com/10.1002/2013JA019431
More Details
Authors: Chen Y., Friedel R. H. W., Henderson M. G., Claudepierre S. G., Morley S., et al.
Title: REPAD: An Empirical Model of Pitch-angle Distributions for Energetic Electrons in the Earth’s Outer Radiation Belt
Abstract: We have recently conducted a statistical survey on pitch angle distributions of energetic electrons trapped in the Earth's outer radiation belt, and a new empirical model was developed based upon survey results. This model—relativistic electron pitch angle distribution (REPAD)—aims to present statistical pictures of electron equatorial pitch angle distributions, instead of the absolute flux levels, as a function of energy, L shell, magnetic local time, and magnetic activity. To quantify and facilitate this statistical survey, we use Legendre polynomials to fit long-term in situ directional fluxes observed near the magnetic equator from three missions: CRRES, Polar, and LANL-97A. As the first of this kind of model, REPAD covers the whole outer belt region, providing not only the mean an. . .
Date: 03/2014 Publisher: Journal of Geophysical Research Pages: 1693-1708 DOI: 10.1002/2013JA019431 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2013JA019431/full
More Details
Authors: Ni Binbin, Li Wen, Thorne Richard M, Bortnik Jacob, Ma Qianli, et al.
Title: Resonant scattering of energetic electrons by unusual low-frequency hiss
Abstract: We quantify the resonant scattering effects of the unusual low-frequency dawnside plasmaspheric hiss observed on 30 September 2012 by the Van Allen Probes. In contrast to normal (~100–2000 Hz) hiss emissions, this unusual hiss event contained most of its wave power at ~20–200 Hz. Compared to the scattering by normal hiss, the unusual hiss scattering speeds up the loss of ~50–200 keV electrons and produces more pronounced pancake distributions of ~50–100 keV electrons. It is demonstrated that such unusual low-frequency hiss, even with a duration of a couple of hours, plays a particularly important role in the decay and loss process of energetic electrons, resulting in shorter electron lifetimes for ~50–400 keV electrons than normal hiss, and should be carefully incorpora. . .
Date: 03/2014 Publisher: Geophysical Research Letters Pages: 1854 - 1861 DOI: 10.1002/2014GL059389 Available at: http://doi.wiley.com/10.1002/2014GL059389
More Details
Authors: Yu Yiqun, Jordanova Vania, Welling Dan, Larsen Brian, Claudepierre Seth G., et al.
Title: The role of ring current particle injections: Global simulations and Van Allen Probes observations during 17 March 2013 storm
Abstract: We simulate substorm injections observed by the Van Allen Probes during the 17 March 2013 storm using a self-consistent coupling between the ring current model RAM-SCB and the global MHD model BATS-R-US. This is a significant advancement compared to previous studies that used artificially imposed electromagnetic field pulses to mimic substorm dipolarization and associated inductive electric field. Several substorm dipolarizations and injections are reproduced in the MHD model, in agreement with the timing of shape changes in the AE/AL index. The associated inductive electric field transports plasma sheet plasma to geostationary altitudes, providing the boundary plasma source to the ring current model. It is found that impulsive plasma sheet injections, together with a large-scale convectio. . .
Date: 02/2014 Publisher: Geophysical Research Letters Pages: 1126 - 1132 DOI: 10.1002/2014GL059322 Available at: http://doi.wiley.com/10.1002/2014GL059322
More Details
Authors: Gkioulidou Matina, Ukhorskiy A., Mitchell D G, Sotirelis T., Mauk B., et al.
Title: The role of small-scale ion injections in the buildup of Earth's ring current pressure: Van Allen Probes observations of the March 17 th , 2013 storm
Abstract: Energetic particle transport into the inner magnetosphere during geomagnetic storms is responsible for significant plasma pressure enhancement, which is the driver of large-scale currents that control the global electrodynamics within the magnetosphere-ionosphere system. Therefore, understanding the transport of plasma from the tail deep into the near-Earth magnetosphere, as well as the energization processes associated with this transport, is essential for a comprehensive knowledge of the near-Earth space environment. During the main phase of a geomagnetic storm on March 17th 2013 (minimum Dst ~ −137 nT), the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument on the Van Allen Probes observed frequent, small-scale proton injections deep into the inner nightsi. . .
Date: 09/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020096 Available at: http://doi.wiley.com/10.1002/2014JA020096
More Details
Authors: Ukhorskiy A Y, Sitnov M I, Mitchell D G, Takahashi K, Lanzerotti L J, et al.
Title: Rotationally driven ‘zebra stripes’ in Earth’s inner radiation belt
Abstract: Structured features on top of nominally smooth distributions of radiation-belt particles at Earth have been previously associated with particle acceleration and transport mechanisms powered exclusively by enhanced solar-wind activity1, 2, 3, 4. Although planetary rotation is considered to be important for particle acceleration at Jupiter and Saturn5, 6, 7, 8, 9, the electric field produced in the inner magnetosphere by Earth’s rotation can change the velocity of trapped particles by only about 1–2 kilometres per second, so rotation has been thought inconsequential for radiation-belt electrons with velocities of about 100,000 kilometres per second. Here we report that the distributions of energetic electrons across the entire spatial extent of Earth’s inner radiation belt are organize. . .
Date: 01/2014 Publisher: Nature Pages: 338 - 340 DOI: 10.1038/nature13046 Available at: http://www.nature.com/doifinder/10.1038/nature13046
More Details
Authors: Finnigan Jeremiah
Title: A scripting framework for automated flight SW testing: Van Allen Probes lessons learned
Abstract: This paper summarizes the lessons learned from implementing and utilizing an automated flight software test framework for the Van Allen Probes mission. This includes a recommended list of features/characteristics that a test framework should support. This paper also presents two test scripting design patterns that are useful for constructing an automated regression test suite. These design patterns are intended for non-object-oriented scripting environments - which is typical of space mission ground systems. A process flow is described for developing and utilizing an automated test scripting framework for future missions based upon the design patterns presented herein.
Date: 03/2014 Publisher: IEEE DOI: 10.1109/AERO.2014.6836164 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6836164
More Details
Authors: Firpi Alexer H., Oxenrider Jason R., Ramachandran Vignesh R., Mitchell Herbert J., Tzeng Nigel H., et al.
Title: Signature modeling for LWIR spectrometer
Abstract: Hyperspectral longwave infrared (LWIR) is used for a variety of targets such as gases and solids with the advantage of day or night data collections. A longwave infrared system must have the ability to convert the radiance data it measures to emissivity prior to running a detection algorithm, commonly called a temperature-emissivity separation (TES) algorithm. Key parts of this TES algorithm are accounting for the reflected down-welling radiation from the atmosphere, upwelling background radiance removal, and most importantly determining the temperature of the material. Accounting for these environmental conditions allows for the data to be processed in emissivity to be used in the detection algorithm. The processed data also allows a baseline to determine where key features exist in the s. . .
Date: 03/2014 Publisher: IEEE DOI: 10.1109/AERO.2014.6836439 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6836439
More Details
Authors: Hudson M K, Baker D N, Goldstein J, Kress B T, Paral J., et al.
Title: Simulated magnetopause losses and Van Allen Probe flux dropouts
Abstract: Three radiation belt flux dropout events seen by the Relativistic Electron Proton Telescope soon after launch of the Van Allen Probes in 2012 (Baker et al., 2013a) have been simulated using the Lyon-Fedder-Mobarry MHD code coupled to the Rice Convection Model, driven by measured upstream solar wind parameters. MHD results show inward motion of the magnetopause for each event, along with enhanced ULF wave power affecting radial transport. Test particle simulations of electron response on 8 October, prior to the strong flux enhancement on 9 October, provide evidence for loss due to magnetopause shadowing, both in energy and pitch angle dependence. Severe plasmapause erosion occurred during ~ 14 h of strongly southward interplanetary magnetic field Bz beginning 8 October coincident with. . .
Date: 02/2014 Publisher: Geophysical Research Letters Pages: 1113 - 1118 DOI: 10.1002/2014GL059222 Available at: http://doi.wiley.com/10.1002/2014GL059222
More Details
Authors: Glauert Sarah A, Horne Richard B, and Meredith Nigel P
Title: Simulating the Earth's radiation belts: Internal acceleration and continuous losses to the magnetopause
Abstract: In the Earth's radiation belts the flux of relativistic electrons is highly variable, sometimes changing by orders of magnitude within a few hours. Since energetic electrons can damage satellites it is important to understand the processes driving these changes and, ultimately, to develop forecasts of the energetic electron population. One approach is to use three-dimensional diffusion models, based on a Fokker-Planck equation. Here we describe a model where the phase-space density is set to zero at the outer L∗ boundary, simulating losses to the magnetopause, using recently published chorus diffusion coefficients for 1.5≤L∗≤10. The value of the phase-space density on the minimum-energy boundary is determined from a recently published, solar wind-dependent, statistical model. Our s. . .
Date: 09/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 7444 - 7463 DOI: 10.1002/jgra.v119.910.1002/2014JA020092 Available at: http://doi.wiley.com/10.1002/jgra.v119.9http://doi.wiley.com/10.1002/2014JA020092
More Details
Authors: Pakhotin I. P., Drozdov A. Y., Shprits Y Y, Boynton R. J., Subbotin D. A., et al.
Title: Simulation of high-energy radiation belt electron fluxes using NARMAX-VERB coupled codes
Abstract: This study presents a fusion of data-driven and physics-driven methodologies of energetic electron flux forecasting in the outer radiation belt. Data-driven NARMAX (Nonlinear AutoRegressive Moving Averages with eXogenous inputs) model predictions for geosynchronous orbit fluxes have been used as an outer boundary condition to drive the physics-based Versatile Electron Radiation Belt (VERB) code, to simulate energetic electron fluxes in the outer radiation belt environment. The coupled system has been tested for three extended time periods totalling several weeks of observations. The time periods involved periods of quiet, moderate, and strong geomagnetic activity and captured a range of dynamics typical of the radiation belts. The model has successfully simulated energetic electron fluxes . . .
Date: 10/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020238 Available at: http://doi.wiley.com/10.1002/2014JA020238
More Details
Authors: Goldstein J, De Pascuale S., Kletzing C., Kurth W., Genestreti K. J., et al.
Title: Simulation of Van Allen Probes Plasmapause Encounters
Abstract: We use an E × B-driven plasmapause test particle (PTP) simulation to provide global contextual information for in situ measurements by the Van Allen Probes (RBSP) during 15–20 January 2013. During 120 h of simulation time beginning on 15 January, geomagnetic activity produced three plumes. The third and largest simulated plume formed during enhanced convection on 17 January, and survived as a rotating, wrapped, residual plume for tens of hours. To validate the simulation, we compare its output with RBSP data. Virtual RBSP satellites recorded 28 virtual plasmapause encounters during 15–19 January. For 26 of 28 (92%) virtual crossings, there were corresponding actual RBSP encounters with plasmapause density gradients. The mean difference in encounter time between model and data is. . .
Date: 09/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020252 Available at: http://doi.wiley.com/10.1002/2014JA020252
More Details
Authors: Jordanova V K, Yu Y., Niehof J T, Skoug R M, Reeves G D, et al.
Title: Simulations of inner magnetosphere dynamics with an expanded RAM-SCB model and comparisons with Van Allen Probes observations
Abstract: Simulations from our newly expanded ring current-atmosphere interactions model with self-consistent magnetic field (RAM-SCB), now valid out to 9 RE, are compared for the first time with Van Allen Probes observations. The expanded model reproduces the storm time ring current buildup due to the increased convection and inflow of plasma from the magnetotail. It matches Magnetic Electron Ion Spectrometer (MagEIS) observations of the trapped high-energy (>50 keV) ion flux; however, it underestimates the low-energy (<10 keV) Helium, Oxygen, Proton, and Electron (HOPE) observations. The dispersed injections of ring current ions observed with the Energetic particle, Composition, and Thermal plasma (ECT) suite at high (>20 keV) energy are better reproduced using a high-resolution convection model. . . .
Date: 04/2014 Publisher: Geophysical Research Letters Pages: 2687 - 2694 DOI: 10.1002/2014GL059533 Available at: http://doi.wiley.com/10.1002/2014GL059533
More Details
Authors: Reid Mark, and Ottman Geffrey
Title: Software controlled memory scrubbing for the Van Allen Probes Solid State Recorder (SSR) memory
Abstract: The Van Allen Probes mission which was designed and built by the Johns Hopkins University, Applied Physics Laboratory (APL) is also being operated by the APL mission operations team in Laurel, Maryland. The two Van Allen Probes spacecraft have been successfully collecting data on orbit since they were launched on August 30, 2012. These twin probes are providing unprecedented insight into the physical dynamics of the Earth's radiation belts and are giving scientists the data they need to make predictions of changes in this critical region of space, by sampling the harsh radiation belt environment where major space weather activity occurs and many spacecraft operate.[1] Shortly after launch, radiation induced anomalies were reported on both spacecraft and investigated by the hardware and sof. . .
Date: 03/2014 Publisher: IEEE DOI: 10.1109/AERO.2014.6836406 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6836406
More Details
Authors: Wang Chih-Ping, Xing Xiaoyan, Nakamura T. K. M., Lyons Larry R., and Angelopoulos Vassilis
Title: Source and structure of bursty hot electron enhancements in the tail magnetosheath: Simultaneous two-probe observation by ARTEMIS
Abstract: Bursty enhancements of hot electrons (≳0.5 keV) with duration of minutes sometimes occur in the tail magnetosheath. In this study we used the unique simultaneous measurements from the two Acceleration Reconnection Turbulence and Electrodynamics of Moon's Interaction with the Sun probes to investigate the likely sources, spatial structures, and responsible processes for these hot electron enhancements. The enhancements can be seen at any distance across the magnetosheath, but those closer to the magnetopause are more often accompanied by magnetosheath density and flow magnitudes changing to more magnetosphere-like values. From simultaneous measurements with the two probes being on either side of magnetopause or both in the magnetosheath, it is evident that these hot electrons come from . . .
Date: 12/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020603 Available at: http://doi.wiley.com/10.1002/2014JA020603
More Details
Authors: Turner Drew L
Title: Space science: Near-Earth space shows its stripes
Abstract: Using some of the first scientific satellites put into orbit during the late 1950s, teams led by physicists James Van Allen in the United States and Sergei Vernov in the Soviet Union independently reported1, 2 on defined regions of radiation in near-Earth space. These regions came to be known as Earth's radiation belts, and they represent the first major scientific discovery of the space age. However, despite decades of study, many questions in radiation-belt physics remain unanswered, mostly concerning the nature of the inner and outer belts, which are populated by electrons moving at near the speed of light. As society becomes ever more dependent on satellite-based technology, it is increasingly important to understand the variability in the radiation belts, because the highest-energy . . .
Date: 03/2014 Publisher: Nature Pages: 308 - 309 DOI: 10.1038/507308a Available at: http://www.nature.com/doifinder/10.1038/507308a
More Details
Authors: Lesley Mellinee
Title: “Spacecraft Reveals Recent Geological Activity on the Moon”
Abstract: Through a content analysis of 200 “tweets,” this study was an exploration into the distinct features of text posted to NASA's Twitter site and the potential for these posts to serve as more engaging scientific text than traditional textbooks for adolescents. Results of the content analysis indicated the tweets and linked texts on the NASA Twitter site were constructed primarily as a form of “adapted primary literature” where science texts created by scientists for other scientists are presented in a slightly modified format for the general public. Further, the content analysis revealed the majority of text posted was designed to cultivate scientific knowledge for novices. Findings of the content analysis are presented and implications for teaching scientific literacies to adolescen. . .
Date: 02/2014 Publisher: Journal of Adolescent & Adult Literacy Pages: 377 - 385 DOI: 10.1002/jaal.2014.57.issue-510.1002/jaal.258 Available at: http://doi.wiley.com/10.1002/jaal.2014.57.issue-5http://doi.wiley.com/10.1002/jaal.258
More Details
Authors: Mann I. R., Usanova M. E., Murphy K., Robertson M. T., Milling D. K., et al.
Title: Spatial localization and ducting of EMIC waves: Van Allen Probes and ground-based observations
Abstract: On 11 October 2012, during the recovery phase of a moderate geomagnetic storm, an extended interval (> 18 h) of continuous electromagnetic ion cyclotron (EMIC) waves was observed by Canadian Array for Real-time Investigations of Magnetic Activity and Solar-Terrestrial Environment Program induction coil magnetometers in North America. At around 14:15 UT, both Van Allen Probes B and A (65° magnetic longitude apart) in conjunction with the ground array observed very narrow (ΔL ~ 0.1–0.4) left-hand polarized EMIC emission confined to regions of mass density gradients at the outer edge of the plasmasphere at L ~ 4. EMIC waves were seen with complex polarization patterns on the ground, in good agreement with model results from Woodroffe and Lysak (2012) and consistent with Earth's . . .
Date: 02/2014 Publisher: Geophysical Research Letters Pages: 785 - 792 DOI: 10.1002/2013GL058581 Available at: http://doi.wiley.com/10.1002/2013GL058581
More Details
Authors: Berman Simmie, Cheng Weilun, Borowski Heather, and Persons David
Title: Spin stabilization design and testing of the Van Allen Probes
Abstract: This paper describes the design decisions taken and the mass properties tracking and testing flow chosen for the Van Allen Probes spacecraft and their deployable systems to achieve the coning angle requirements. Topics include a list of major requirements, a brief description of the error budget, a description of the tracking process of the spacecraft mass properties prior to test, a description of the spin balance and mass properties testing of the spacecraft core and deployable systems, and a presentation of the final mass properties and coning angle calculations of the fully deployed observatories. Launched August 30, 2012, the observed on-orbit, fully deployed configuration coning angles met the requirements, validating the spin balance and mass properties tracking, testing, and calcul. . .
Date: 03/2014 Publisher: IEEE DOI: 10.1109/AERO.2014.6836234 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6836234
More Details
Authors: Boynton R. J., Balikhin M. A., and Mourenas D.
Title: Statistical analysis of electron lifetimes at GEO: Comparisons with chorus-driven losses
Abstract: The population of electrons in the Earth's outer radiation belt increases when the magnetosphere is exposed to high-speed streams of solar wind, coronal mass ejections, magnetic clouds, or other disturbances. After this increase, the number of electrons decays back to approximately the initial population. This study statistically analyzes the lifetimes of the electron at Geostationary Earth Orbit (GEO) from Los Alamos National Laboratory electron flux data. The decay rate of the electron fluxes are calculated for 14 energies ranging from 24 keV to 3.5 MeV to identify a relationship between the lifetime and energy of the electrons. The statistical data show that electron lifetimes increase with energy. Also, the statistical results show a good agreement up to ∼1 MeV with an analytical mod. . .
Date: 08/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 6356 - 6366 DOI: 10.1002/2014JA019920 Available at: http://doi.wiley.com/10.1002/2014JA019920
More Details
Authors: Spasojevic M.
Title: Statistical analysis of ground-based chorus observations during geomagnetic storms
Abstract: Chorus observations from two ground-based, Antarctic receiving stations are analyzed for a set of geomagnetic storms from 2000 to 2010. Superposed epoch analysis is performed together with statistical hypothesis testing to determine whether the observed quantities (geomagnetic indices, outer belt energetic electron fluxes, and chorus properties) are statistically significantly different as functions of storm phase, storm size, and storm type. Waves generated in the outer dayside magnetosphere and observed on the ground at South Pole Station are suppressed during main phase and are statistically unchanged from random intervals during recovery phase. Waves generated in the inner magnetosphere and observed on the ground at Palmer Station are significantly enhanced during storm main phase and . . .
Date: 10/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 8299 - 8317 DOI: 10.1002/jgra.v119.1010.1002/2014JA019975 Available at: http://doi.wiley.com/10.1002/jgra.v119.10http://doi.wiley.com/10.1002/2014JA019975
More Details
Authors: Santolik O, Hospodarsky G B, Kurth W S, Averkamp T. F., Kletzing C A, et al.
Title: Statistical properties of wave vector directions of whistler-mode waves in the radiation belts based on measurements of the Van Allen probes and Cluster missions
Abstract: Wave-particle interactions in the Earth's Van Allen radiation belts are known to be an efficient process of the exchange of energy between different particle populations, including the energetic radiation belt particles. The whistler mode waves, especially chorus, can control the radiation belt dynamics via linear or nonlinear interactions with both the energetic radiation belt electrons and lower energy electron populations. Wave vector directions are a very important parameter of these wave-particle interactions. We use measurements of whistlermode waves by the WAVES instrument from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) onboard the Van Allen Probes spacecraft covering the equatorial region of the Earth's magnetosphere in all MLT sectors, and a . . .
Date: 08/2014 Publisher: IEEE DOI: 10.1109/URSIGASS.2014.6929880 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6929880
More Details
Authors: Gao X., Li W, Thorne R M, Bortnik J, Angelopoulos V, et al.
Title: Statistical results describing the bandwidth and coherence coefficient of whistler mode waves using THEMIS waveform data
Abstract: The bandwidths and coherence coefficients of lower band whistler mode waves are analyzed using Time History of Events and Macroscale Interactions during Substorms (THEMIS) waveform data for rising tones, falling tones, and hiss-like emissions separately. We also evaluate their dependences on the spatial location, electron density, the ratio of plasma frequency to local electron gyrofrequency (fpe/fce), and the wave amplitude. Our results show that the bandwidth normalized by the local electron gyrofrequency (fce) of rising and falling tones is very narrow (~0.01 fce), smaller than that of the hiss-like emissions (~0.025 fce). Meanwhile, the normalized bandwidth of discrete emissions gradually decreases with increasing wave amplitude, whereas that of hiss-like emissions increases slowly. Th. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020158 Available at: http://doi.wiley.com/10.1002/2014JA020158
More Details
Authors: Foster J. C., Erickson P. J., Coster A. J., Thaller S., Tao J., et al.
Title: Storm time observations of plasmasphere erosion flux in the magnetosphere and ionosphere
Abstract: Plasmasphere erosion carries cold dense plasma of ionospheric origin in a storm-enhanced density plume extending from dusk toward and through the noontime cusp and dayside magnetopause and back across polar latitudes in a polar tongue of ionization. We examine dusk sector (20 MLT) plasmasphere erosion during the 17 March 2013 storm (Dst ~ −130 nT) using simultaneous, magnetically aligned direct sunward ion flux observations at high altitude by Van Allen Probes RBSP-A (at ~3.0 Re) and at ionospheric heights (~840 km) by DMSP F-18. Plasma erosion occurs at both high and low altitudes where the subauroral polarization stream flow overlaps the outer plasmasphere. At ~20 UT, RBSP-A observed ~1.2E12 m−2 s−1 erosion flux, while DMSP F-18 observed ~2E13 m−2 s−1 sunward flux. We. . .
Date: 02/2014 Publisher: Geophysical Research Letters Pages: 762 - 768 DOI: 10.1002/2013GL059124 Available at: http://doi.wiley.com/10.1002/2013GL059124
More Details
Authors: Makela Jonathan J., Harding Brian J., Meriwether John W., Mesquita Rafael, Sanders Samuel, et al.
Title: Storm time response of the mid-latitude thermosphere: Observations from a network of Fabry-Perot interferometers
Abstract: Observations of thermospheric neutral winds and temperatures obtained during a geomagnetic storm on 2 October 2013 from a network of six Fabry-Perot interferometers (FPIs) deployed in the midwest United States are presented. Coincident with the commencement of the storm, the apparent horizontal wind is observed to surge westward and southward (towards the equator). Simultaneous to this surge in the apparent horizontal winds, an apparent downward wind of approximately 100 m/s lasting for 6 hours is observed. The apparent neutral temperature is observed to increase by approximately 400 K over all of the sites. Observations from an all-sky imaging system operated at the Millstone Hill observatory indicate the presence of a stable auroral red (SAR) arc and diffuse red aurora during this . . .
Date: 08/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA019832 Available at: http://doi.wiley.com/10.1002/2014JA019832
More Details
Authors: Menietti J. D., Averkamp T. F., Groene J. B., Horne R B, Shprits Y Y, et al.
Title: Survey analysis of chorus intensity at Saturn
Abstract: In order to conduct theoretical studies or modeling of pitch angle scattering of electrons by whistler mode chorus emission at Saturn, a knowledge of chorus occurrence and magnetic intensity levels, PB, as well as the distribution of PB relative to frequency and spatial parameters is essential. In this paper an extensive survey of whistler mode magnetic intensity levels at Saturn is carried out, and Gaussian fits of PB are performed. We fit the spectrum of wave magnetic intensity between the lower hybrid frequency and fceq/2 and for frequencies in the interval fceq/2 < f < 0.9 fceq, where fceq is the cyclotron frequency mapped to the equator. Saturn chorus is observed over most local times, but is dominant on the nightside in the range of 4.5 < L <7.5, with minimum power at t. . .
Date: 10/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 8415 - 8425 DOI: 10.1002/jgra.v119.1010.1002/2014JA020523 Available at: http://doi.wiley.com/10.1002/jgra.v119.10http://doi.wiley.com/10.1002/2014JA020523
More Details

Pages